中国激光, 2024, 51 (3): 0307102, 网络出版: 2024-01-19  

采用光子计数测量的高灵敏度锥束XLCT

High‑Sensitivity Cone‑Beam XLCT Using Photon Counting Measurements
作者单位
1 天津大学精密仪器与光电子工程学院,天津 300072
2 天津市生物医学检测技术与仪器重点实验室,天津 300072
摘要
X射线激发发光断层成像(XLCT)是一种新兴的混合成像技术,该技术可同时获得目标体结构信息和功能信息。然而,窄束XLCT重建图像虽然具有高空间分辨率,但X射线利用率较低,数据采集时间过长;锥束XLCT系统提高了X射线利用率,缩短了数据采集时间,但有限的探测角度导致图像重建质量相对较低。为解决上述问题,提高X射线利用率,高效实现多角度高灵敏数据采集,提出了一种基于光子计数测量的锥束XLCT系统,并通过仿体实验对其性能进行了验证。仿体实验结果表明,6个角度锥束照射模式下重建图像的相似度系数(DICE)可达50%,系统保真度(SF)和重建浓度误差(RCE)达到0.7以上,可实现3 mg·mL-1以上的荧光物质质量浓度差距的重建。
Abstract
Objective

X-ray luminescence computed tomography (XLCT) technology uses X-ray excitation to stimulate specific luminescent materials at the nanoscale, termed phosphor nanoparticles (PNPs), to produce near-infrared light. Photodetectors then capture the emitted near-infrared light signals from these excited PNPs. Through suitable algorithms, the distribution of PNPs within biological tissues can be visualized. This method allows for structural and functional insights into biological tissues, showing great potential for advancement. There are two main types of XLCT systems: narrow-beam and cone-beam. The narrow-beam XLCT system exhibits higher spatial resolution, albeit at the cost of lower X-ray utilization efficiency. This inefficiency results in extended imaging times, limiting its potential for clinical use. Conversely, the cone-beam XLCT system improves X-ray efficiency and shortens detection time. However, the quality of the reconstructed images tends to be lower due to detection angle limitations. To overcome these challenges, there is a need for an innovative XLCT system that realizes rapid and highly sensitive data collection while also maximizing the use of X-ray technology. By addressing these issues, the clinical limitations of XLCT can be reduced to pave the way for its further development, thereby unlocking a plethora of possibilities.

Methods

This study introduces a new cone-beam XLCT system based on photon-counting measurements, complemented by an associated reconstruction method. Through the synergistic collaboration between the field-programmable gate array (FPGA) based sub-sampling unit and upper-level control unit, the system realizes automated multi-channel measurements. This integration shortens data acquisition time, boosts experimental efficiency, and mitigates the risks associated with X-ray exposure. After the completion of system implementation, we conduct experimental validation of the system and methodology. Specifically, a fabricated phantom is subjected to multi-angle projection measurements using the established system, and image reconstruction and evaluation are performed using the Tikhonov reconstruction algorithm.

Results and Discussions

The results of the dual target phantom experiment indicate that under the conditions of a cylindrical phantom radius of 40 mm, target radius of 6 mm, and distance of 14 mm from the dual target phantom (Fig.2), the similarity coefficient (DICE) of the reconstructed image of the dual target phantom exceeds 50% under six-angle cone-beam X-ray irradiation. Furthermore, the system fidelity (SF) exceeds 0.7 (Table 1). In the phantom experiment of dual targets with different concentrations, the system proposed in this study effectively distinguishes dual targets with a mass concentration difference of more than 3 mg/mL. The DICE of the reconstruction image maintains over 50%, SF remains over 0.7, and reconstruction concentration error (RCE) is also over 0.7 (Table 2). These phantom experiment results confirm the good fidelity and resolution capability of the proposed system. Nevertheless, numerous factors potentially degrade the experimental outcomes, such as the attenuation and scattering of X-ray beams in the XLCT system, the physical and chemical composition of the target body, or even uneven concentration distribution. Additionally, artifacts appear in the reconstructed images. In the future, our research will focus on optimizing algorithms and reducing noise to enhance the application of cone-beam XLCT for in vivo experiments.

Conclusions

This study comprehensively considers the advantages and disadvantages of two imaging methods in XLCT and proposes a photon-counting-based multi-channel cone-beam XLCT system. The system automation for multi-angle measurements is realized via FPGA and host computer interaction. Specifically, multi-angle cone-beam irradiation reduces data acquisition time, while photon-counting measurement enhances the system sensitivity. Furthermore, a phantom experiment is conducted to validate the effectiveness and practicality of the proposed system and algorithm. The results demonstrate a significant reduction in data acquisition time and an improvement in the utilization of X-rays.

1 引言

X射线激发发光断层成像(XLCT)是一种新兴的混合成像技术,该技术主要通过X射线特异性激发生物组织体内的纳米荧光物质发出近红外光信号,随后使用重建算法恢复测量组织中纳米磷光物质的空间分布,从而获得组织体内的功能信息,再结合传统计算机断层成像(CT)技术实现生物体结构信息和功能信息的双模态成像。与传统的光学分子成像技术相比,XLCT具有以下优点:1) 成像深度深,空间分辨率高。在XLCT中,X射线作为激励源,穿透生物组织体的能力强,可使XLCT具有更深的检测深度及更高的空间分辨率。尤其是对于深度大于几毫米的生物目标,如通常位于皮肤以下10 mm处的肿瘤,也可以实现高达数百微米的空间分辨率1。2) 无背景荧光以及自体荧光干扰。在成像过程中,XLCT可以消除传统荧光成像中的背景荧光和自体荧光的干扰,获得更高信噪比的测量信号2。3) 能够实现结构与功能双模态成像。一次X射线激发,可以同时获得结构成像和功能成像,减少了成像时间与成本3。近年来,纳米荧光技术的不断发展,为XLCT提供了更多可能,拓宽了其应用范围。

自XLCT被提出以来,国内外很多研究机构都对XLCT展开了研究。根据X射线的激发模式,把XLCT系统大体分为窄束成像系统和锥束成像系统,两种成像系统各有优缺点。2010年,Pratx等4第一次提出将XLCT系统用于分子成像,提出窄束XLCT(NB-XLCT)系统,验证了XLCT的可能性,为XLCT技术的发展奠定了基础。在窄束XLCT系统中,大多数探测器件选择具有高灵敏度、大动态范围的光电倍增管(PMT),PMT可将微弱的输入光转换为电脉冲序列5,这能够提高系统测量的灵敏度。但是,在窄束XLCT系统的成像方式下,由于X射线被准直器遮挡,X射线的利用效率很低,并且系统需要通过平移旋转等操作依次扫描成像物体,故数据测量的时间较长。随着XLCT系统的进一步发展,2013年,Chen等6设计并实现了锥束XLCT(CB-XLCT)系统。基于锥束XLCT系统,一次X射线照射能够覆盖整个待测物体,系统无须进行平移操作,大幅缩短了数据采集时间并提高了X射线的利用率。然而,光在生物组织中具有高散射特性,且在一次扫描过程中,成像体内所有的纳米荧光物质都会被激励,这加剧了图像重建逆问题的不适定性7。此外,锥束XLCT系统大多以电子倍增电荷耦合器件(EMCCD)作为探测器,而EMCCD在一个角度下的探测范围有限,这直接影响了锥束XLCT的空间分辨率,同时EMCCD造价昂贵,性价比较低,导致实验成本较高。

为解决上述问题,提高X射线利用率和系统测量的灵敏度,本文提出了一种基于光子计数测量的锥束XLCT系统,通过光电倍增管(PMT)探测成像物体表面的光信号,提高了探测灵敏度,降低了实验成本,多角度锥束照射能够在提高X射线利用率的同时实现目标体的快速扫描。在系统调试完成后,我们进行了仿体实验,并通过图像重建进一步验证了所提系统的可行性,实验证明所提系统具有良好的保真度和系统分辨力。

2 系统设计

本文提出了一种基于光子计数测量的多通道锥束XLCT系统,如图1所示。该系统通过输出功率为50 W的X射线源特异性激发纳米荧光物质发出近红外光,使用光纤(芯径为0.5 mm,数值孔径为0.37)探测物体表面的荧光强度,光纤另一端连接光开关,通过现场可编程门阵列(FPGA)控制光开关进行通道切换。为实现对激发光的高灵敏度采集,系统采用光电倍增管作为光电探测器,其可将输入光转换为脉冲宽度为30 ns的脉冲序列。随后,利用FPGA实现多通道自动切换,获得不同角度下各个通道的光子计数值。

图 1. XLCT系统图。(a)XLCT系统原理图;(b)XLCT系统实物图

Fig. 1. XLCT system diagrams. (a) Schematic of XLCT system; (b) physical image of XLCT system

下载图片 查看所有图片

本文所提系统基于单个PMT发展了多角度锥束照射策略,显著降低了系统研制成本,锥束X射线照射提高了X射线的利用率,缩短了数据采集时间;使用PMT进行信号采集,提高了系统测量灵敏度,有效降低了XLCT技术临床应用的壁垒。

3 XLCT理论模型

3.1 XLCT正向模型

锥束X射线激发纳米荧光物质发光的正向过程可以分为三个阶段。首先,X射线源发射锥束X射线并与成像物体相互作用。根据朗伯-比尔定律,此过程可建模8-9

X(r)=Xr0exp-r0rμ(τ)dτ

式中:X(r)为成像物体中位置r处的X射线强度值;由于X射线在空气中不会发生衰减,Xr0为X射线穿透成像对象表面在r0处的强度;μ(τ)为位置τ处的衰减系数(mm-1)。

其次,成像物体内的纳米荧光物质经过X射线激发后产生可见光或近红外光,该发射光线性关系4可表示为

S(r)=εX(r)ρ(r)

式中:S(r)为生物体内纳米荧光物质受激发而产生的近红外光强度;ε为纳米颗粒的光子产率,代表每单位荧光物质质量浓度的量子效率;ρ(r)为纳米荧光物质在位置r处的质量浓度分布(mg·mL-1)。

生物软组织对近红外光具有强散射、弱吸收特性,因此可以采用辐射传输方程(RTE)描述光子输运轨迹8。由于RTE求解复杂,通常以球谐近似方式简化RTE,即扩散方程(DE)10

-[D(r)Φ(r)]+μa(r)Φ(r)=S(r), rΩ

式中:为那勃勒算符;Ω为成像区域;μa为吸收系数;Dr)为扩散系数,D(r)=3μa(r)+(1-g)μs(r)-1,其中,μs为散射系数,g为各向异性参数;Φ(r)为位置r处的光通量密度值。

结合罗宾边界条件(RBC)耦合建模后,基于有限元方法,将成像区域离散成四面体网格11式(3)被改写为

KΦ=εFρ

式中:Φ为成像物体中各节点光通量密度值,Φ=Φr1,,ΦrNTρ为成像物体中各节点纳米荧光物质质量浓度,ρ=ρr1,,ρrNTrN为节点位置,N为离散后有限元节点个数;KF均为N×N的矩阵,第ij列矩阵元表达式具体为

Ki,j=ΩDψi·ψj+μaψiψjdr+12κΩψiψjdr Fi,j=ΩX(r)ψiψjdr

式中:κ为近红外光在成像物体表面的反射情况;ψiψj为形状函数。由于K为正定矩阵,故式(4)可改写为

M=Aρ

式中:A=εK-1F。在本文研究中,锥束X射线照射成像物体,并通过光学探测器获取物体表面的激发光信号,因此只需保留物体表面上探测点位置的光通量密度值即可。保留探测点光通量密度值后,式(6)中各矩阵具体为:A为在所有探测点(共72个探测点,6个角度每个角度下12个探测点)位置处,针对所有组织单元(共离散为19901个节点)得到的系统矩阵;M为得到的72个探测点位置处的光通量密度值。

3.2 XLCT逆向问题

XLCT逆向问题求解即利用光敏探测器捕获的待测物体表面的近红外光测量数据M^,恢复成像物体内部纳米荧光物质的质量浓度(ρ)分布的问题。根据式(6)可得

ρ=A-1M^

由于方程(7)为非适定方程,直接求解ρ是不切实际的。通常将式(7)转化为基于最小二乘法的凸优化函数求解极小值问题12。在逆向问题研究中,我们采用Tikhonov正则化算法求解极小值问题13,从而进行图像重建。Tikhonov正则化的主要思路是在经典最小二乘法中,为了获得具有理想性质的特解,在最小化问题的目标函数中加入了正则化项,即

Aρ-M^22+Γρ22

式中:Γ为Tikhonov矩阵。本文采用了迭代Tikhonov正则化算法14-15,其迭代公式为

ρk=ATA+αΓ-1ATM^+αρk-1

式中:k为迭代次数;α为正则化参数,通过参数α的选取来控制迭代次数和收敛过程。

4 仿体实验

4.1 实验仿体设计

为更好验证所提系统的可行性,我们设计了仿体实验。在仿体实验中,我们设计的双目标圆柱形仿体模型如图2所示。双目标圆柱形仿体半径(R)为40 mm,高(L)为80 mm,将两个半径(R2)为6 mm的圆柱形目标体嵌入仿体,目标体圆心坐标为(13,0)、(-13,0)。仿体对近红外光子的吸收系数为0.004 mm-1,约化散射系数约为1 mm-1,X射线衰减系数为0.012 mm-1。使用注射器将由质量分数为1%的脂肪乳、质量分数为2%的琼脂以及荧光物质Gd2O2S∶Eu3+配制的试剂填充到目标体的空腔内,使其在室温下凝固。在一个探测角度下,每根光纤的切换时间间隔为1 s,PMT的积分时间为1 s,12个通道在一个角度下所需要的测量时间为12 s,旋转台旋转时间为20 s,因此,6个角度探测模式下的整体扫描时间为192 s。在整个实验过程中X射线源的管电压为50 kV、管电流为0.1 mA。

图 2. XLCT实验仿体

Fig. 2. Experiment phantom of XLCT

下载图片 查看所有图片

4.2 图像重建评价指标

为了更好地研究本文所提系统在图像重建方面的效果,对重建结果进行了定量评估。本文采用的评估指标分别为位置误差(LE)、相似度系数(DICE)、均方误差(MSE)、系统保真度(SF)。

位置误差16用来评价图像内重建目标体的位置准确度。LE值越小,表明重建目标体的几何中心与真实目标体的差异越小。表达式为

ELE=Lr-Lt2

式中:ELE为位置误差;Lr为重建目标中心位置的三维坐标;Lt为真实目标中心位置的三维坐标。

相似度系数17用来评价重建图像中目标体的形状与位置的准确程度,其表达式为

EDICE=2×AROI,r-AROI,tAROI,r+AROI,t×100%

式中:EDICE为相似度系数;AROI,r为重建区域中强度值大于最大值的10%的体元的面积;AROI,t为实际目标体的面积。通常DICE越接近100%,重建目标体的准确度越高。

均方误差18用来评价重建图像的精度。MSE越小,表明重建的图像与真实图像间的差异越小。表达式为

EMSE=EABE2+EVAREABE=i'=1Nxtrue (i')-xrecon (i')NEVAR=i'=1Nxtrue (i')-x¯recon N

式中:EMSE为均方误差;EABE为节点质量浓度均值;EVAR为节点质量浓度标准差;xtrue (i')为第i'个节点处的真实荧光物质质量浓度值;xrecon (i')为第i'个节点处的重建荧光物质质量浓度值;x¯recon 为重建荧光物质的质量浓度平均值。

系统保真度19用来表示重建结果与真实结果的对应性。SF越接近1,表明系统保真度越高。表达式为

FSF=maxrΩρreconrρtrue 

式中:FSF为系统保真度;maxrΩρreconr为重建区域内目标体中心点荧光物质质量浓度最大值;ρtrue 为重建区域内目标体真实荧光物质质量浓度。

4.3 多角度锥束X射线照射实验

在仿体配置完成之后,我们通过差分测量方式20,基于校正后的实验数据,使用Tikhonov正则化方法进行图像重建,获得双目标仿体的重建二维横截面图像(Z=40 mm)。图3为多角度锥束X射线照射下的双目标仿体实验结果。

图 3. 双目标体仿体多角度锥束照射实验结果。(a)图像重建结果;(b)重建浓度曲线

Fig. 3. Dual target phantom experimental results under multi-angle cone-beam irradiation. (a) Reconstructed images; (b) reconstructed concentration curves

下载图片 查看所有图片

在多角度锥束X射线照射实验中,双目标体荧光物质的质量浓度均为5 mg·mL-1。从图3可以看出,随着探测角度的增加,重建图像中双目标体的形状轮廓逐渐清晰,双目标体更加接近真实情况。在图3(a)所示的两个角度的重建图像中,由于探测角度数较少,探测数据量不足,重建图像伪影面积过大,无法重建出双目标体的具体位置。当探测角度增加到4个时,可以看到两个重建目标体的大概位置,但是在重建图像中存在伪影,且双目标体中心位置与实际情况相比有了一定的偏差,并且双目标体的重建浓度存在一定误差。当探测角度增加到6个时,重建图像中的目标体轮廓更加明显,形状更加规则,双目标体的中心黏连程度有所减弱。从图3(b)可以看出,两个角度下无法重建出双目标的具体位置,4个角度下目标体中心与实际情况有一定偏差,且双目标体浓度差异较大,6个角度下能够更有效地重建出目标体的位置,两个目标体的浓度差异有了一定缓解。

表1为多角度锥束照射双目标仿体实验的评价指标计算结果。可以看出,随着探测角度的增加,重建图像的评价指标均有了明显改善,其中位置误差LE1和LE2缩小了约10 mm和7 mm,均方误差MSE降低了0.3,相似度系数DICE的提升超过了30百分点,在6个角度下,重建图像的DICE能够到达50%以上,系统保真度SF可以达到0.7以上。实验结果验证了本文所提系统的可行性以及重建算法的有效性。

表 1. 多角度锥束照射双目标仿体实验图像评价指标计算结果

Table 1. Calculation results of image evaluation indicators for dual target phantom experiments under multi-angle cone-beam irradiation

Number of anglesLE /mmSFMSEDICE /%
LE1LE2SF1SF2
211.5611.240.9623
45.325.900.470.770.7448
61.073.890.730.700.6457

查看所有表

4.4 系统分辨力评估实验

为验证本文所提系统的分辨能力,我们进行了不同荧光物质浓度双目标仿体实验以验证系统对不同浓度目标体的分辨能力,并引入重建浓度误差(RCE)评价指标。RCE反映了系统对不同浓度目标体的分辨能力,RCE越接近1,表示系统对不同浓度目标体的分辨能力越强,表达式为

ERCE=ρ1recon -ρ2recon ρ1true -ρ2true 

式中:ERCE为重建浓度误差;ρ1recon -ρ2recon 为重建双目标体的中心浓度差;ρ1true -ρ2true 为真实双目标体的中心浓度差。

图4(a)可以看出,随着双目标体荧光物质浓度的不断接近,系统对双目标体的分辨能力不断下降。当双目标体质量浓度差为5 mg·mL-1时,可以重建出双目标体的具体形态,且目标体轮廓清晰。当双目标体质量浓度差距缩小到3 mg·mL-1时,系统依然能够区分出不同浓度的目标体,但此时双目标体伪影面积有了一定的增加,形状轮廓也发生了改变。当双目标体质量浓度差距缩小到1 mg·mL-1时,重建图像中浓度较小目标体的轮廓和形状变得模糊,浓度较大目标体的中心位置与真实情况相比有了一定偏移且目标体周围伪影面积较大,无法有效重建出双目标体的具体形态。

图 4. 不同浓度双目标仿体实验结果。(a)图像重建结果;(b)重建浓度曲线

Fig. 4. Results of dual target phantom experiments with different concentrations. (a) Reconstructed images; (b) reconstructed concentration curves

下载图片 查看所有图片

表2为不同浓度双目标仿体实验的评价指标计算结果。可以看出,随着双目标体浓度的不断接近,双目标体的重建效果不断下降,但是本文所提系统仍能有效识别出质量浓度差距在3 mg·mL-1以上的双目标体,图像重建相似度系数DICE可以达到50%以上,目标体位置误差LE在3 mm以内,均方误差MSE低至0.61,系统保真度SF达到0.7。实验结果验证了所提系统具有较好的分辨能力,能够有效分辨出质量浓度差距在3 mg·mL-1以上的不同双目标体,重建浓度误差RCE可以达到0.7以上。

表 2. 不同目标体浓度仿体实验图像评价指标计算结果

Table 2. Calculation results of image evaluation indicators for dual target phantom experiments with different target concentrations

ρ1true -ρ2true  /(mg·mL-1LE /mmSFMSEDICE /%RCE
LE1LE2SF1SF2
52.491.420.720.760.58590.80
32.581.090.710.730.61560.77
10.495.880.510.710.65461.72

查看所有表

5 结论

综合考量XLCT两种成像方式的优缺点,提出了一种基于光子计数测量的多通道锥束XLCT系统,并且通过FPGA与上位机交互实现了系统的自动化测量,多角度锥束照射缩短了数据采集时间,光子计数技术提高了系统的灵敏度。经过调试,该系统能够达到预期目标,大幅缩短了数据采集时间并提高了X射线的利用率。为验证所提系统的可行性与重建算法的有效性,进行了仿体实验,并利用实验数据进行图像重建。

双目标仿体实验结果表明,当圆柱形仿体半径为40 mm,目标体半径为6 mm,双目标体间的距离为14 mm时,6个角度的锥束X射线照射下双目标体的重建图像的相似度系数DICE能达到50%以上,系统保真度SF达到0.7以上。在不同浓度的双目标仿体实验中,所提系统能有效分辨出质量浓度差距在3 mg·mL-1以上的双目标体,重建图像的相似度系数DICE仍然可以达到50%以上,系统保真度SF依然可以达到0.7以上,并且重建浓度误差RCE也达到了0.7以上。仿体实验结果验证了所提系统具有良好的系统保真度和分辨能力。但是在实验过程中,还存在许多其他因素导致结果恶化,例如XLCT系统中X射线束的衰减和散射、目标体的物理结构和化学组成甚至是浓度分布不均等都可能导致实验结果恶化,与此同时,在重建图像中有伪影的出现。算法的优化以及噪声的削弱上将会成为我们下一步关注的重点以及未来改进的方向,从而实现锥束XLCT在在体实验中的应用。

参考文献

[1] Pratx G, Carpenter C M, Sun C, et al. X-ray luminescence computed tomography via selective excitation: a feasibility study[J]. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992-1999.

[2] Liu Y F, Chen W, Wang S P, et al. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation[J]. Applied Physics Letters, 2008, 92(4): 043901.

[3] 束月霞, 赵丽丽, 蒋皆恢, 等. X射线发光光学断层成像的研究进展[J]. 科学通报, 2017, 62(33): 3838-3850.

    Shu Y X, Zhao L L, Jiang J H, et al. Research progress of X-ray luminescence optical tomography[J]. Chinese Science Bulletin, 2017, 62(33): 3838-3850.

[4] Pratx G, Carpenter C M, Sun C, et al. Tomographic molecular imaging of x-ray-excitable nanoparticles[J]. Optics Letters, 2010, 35(20): 3345-3347.

[5] 刘洋, 刘东远, 张耀, 等. 面向脑机接口应用的便携式fNIRS拓扑成像系统:全并行检测与初步范式实验[J]. 中国激光, 2021, 48(11): 1107001.

    Liu Y, Liu D Y, Zhang Y, et al. A portable fNIRS-topography system for BCI applications: full parallel detection and pilot paradigm validation[J]. Chinese Journal of Lasers, 2021, 48(11): 1107001.

[6] Chen D M, Zhu S P, Yi H J, et al. Cone beam X-ray luminescence computed tomography: a feasibility study[J]. Medical Physics, 2013, 40(3): 031111.

[7] 张海波, 寇姣姣, 黄启辰, 等. 一种优化区域知识先验的稀疏角锥束X射线发光断层成像方法[J]. 光学学报, 2022, 42(1): 0117001.

    Zhang H B, Kou J J, Huang Q C, et al. Sparse-view cone-beam X-ray luminescence computed tomography imaging for optimized regional prior knowledge[J]. Acta Optica Sinica, 2022, 42(1): 0117001.

[8] 徐可欣, 高峰, 赵会娟. 生物医学光子学[M]. 2版. 北京: 科学出版社, 2011.

    XuK X, GaoF, ZhaoH J. Biomedical photonics[M]. 2nd ed. Beijing: Science Press, 2011.

[9] 邸江磊, 林俊成, 钟丽云, 等. 基于深度学习的稀疏或有限角度CT重建方法研究综述[J]. 激光与光电子学进展, 2023, 60(8): 081002.

    Di J L, Lin J C, Zhong L Y, et al. Review of sparse or limited angle CT reconstruction methods based on deep learning[J]. Laser & Optoelectronics Progress, 2023, 60(8): 081002.

[10] KloseA D. The inverse source problem of the equation of radiative transfer in fluorescence and bioluminescence tomography[EB/OL]. [2023-02-03]. https:∥opg.optica.org/view_article.cfm?pdfKey=b05b54cf-646d-4f25-a1a7b4930664c1d6_152657.

[11] Zhang G L, Liu F, Liu J, et al. Cone beam X-ray luminescence computed tomography based on Bayesian method[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 225-235.

[12] Chen D M, Zhao F J, Yang D F, et al. Feasibility study of three-dimensional multiple-beam X-ray luminescence tomography[J]. Journal of the Optical Society of America A, 2019, 36(10): 1669-1674.

[13] Wang B Y, Wan W B, Wang Y H, et al. An Lp (0≤p≤1)-norm regularized image reconstruction scheme for breast DOT with non-negative-constraint[J]. BioMedical Engineering OnLine, 2017, 16(1): 32.

[14] 傅初黎, 李洪芳, 熊向团. 不适定问题的迭代Tikhonov正则化方法[J]. 计算数学, 2006, 28(3): 237-246.

    Fu C L, Li H F, Xiong X T. Iterated Tikhonov regularization for ill-posed problems[J]. Mathematica Numerica Sinica, 2006, 28(3): 237-246.

[15] 谢胜利, 田森平, 谢振东. 迭代学习控制的理论与应用[M]. 北京: 科学出版社, 2005.

    XieS L, TianS P, XieZ D. Theory and application of iterative learning control[M]. Beijing: Science Press, 2005.

[16] Zhang H B, Geng G H, Chen Y R, et al. Performance evaluation of the simplified spherical harmonics approximation for cone-beam X-ray luminescence computed tomography imaging[J]. Journal of Innovative Optical Health Sciences, 2017, 10(3): 1750005.

[17] Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement[J]. Physics in Medicine and Biology, 2014, 59(12): 2901-2912.

[18] Feng J C, Sun Q W, Li Z, et al. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography[J]. Journal of Biomedical Optics, 2018, 24(5): 051407.

[19] 秦转萍, 赵会娟, 周晓青, 等. 有效探测区域的内窥式漫射层析成像图像重构算法[J]. 光学学报, 2011, 31(11): 1117001.

    Qin Z P, Zhao H J, Zhou X Q, et al. Image reconstruction algorithm for endoscopic diffuse optical tomography based on effective detection area[J]. Acta Optica Sinica, 2011, 31(11): 1117001.

[20] 孔宁宁, 李抄, 夏明亮, 等. 用于自适应光学视网膜成像的平场校正方法研究[J]. 光学学报, 2011, 31(12): 1211001.

    Kong N N, Li C, Xia M L, et al. Research on flat field correction method in adaptive optics retinal imaging system[J]. Acta Optica Sinica, 2011, 31(12): 1211001.

韩景灏, 贾梦宇, 周仲兴, 高峰. 采用光子计数测量的高灵敏度锥束XLCT[J]. 中国激光, 2024, 51(3): 0307102. Jinghao Han, Mengyu Jia, Zhongxing Zhou, Feng Gao. High‑Sensitivity Cone‑Beam XLCT Using Photon Counting Measurements[J]. Chinese Journal of Lasers, 2024, 51(3): 0307102.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!