激光技术, 2022, 46 (3): 320, 网络出版: 2022-06-14   

基于BP算法和FBG传感的复合材料冲击定位检测技术

Composite material impact location detection technology based on BP algorithm and FBG sensing
李蒙 1,2张翠 1,2童杏林 1,2,*邓承伟 1李浩洋 1,3何西琴 1,2冒燕 1,4
作者单位
1 武汉理工大学 光纤传感技术国家工程实验室, 武汉 430070
2 武汉理工大学 信息工程学院, 武汉 430070
3 武汉理工大学 机电工程学院, 武汉 430070
4 日照武汉理工大生物医药暨新材料研究院, 日照 276800
摘要
复合材料在服役过程中易受到外部的低能量冲击, 造成不可见损伤, 为了监测复合材料健康状况, 将光纤布喇格光栅(FBG)传感网络粘贴布置于碳纤维复合材料表面, 采用基于反向传播(BP)神经网络系统的智能复合材料冲击定位识别技术, 获取FBG传感的时域信号响应值, 从而进行了复合材料冲击位置的预判。结果表明, BP神经网络算法具有非线性逼近能力强、容错率高和自适应能力强等优点, 可以实现复合材料层合板的参数化识别定位, 且预测结果与待测复合材料层合板总长度比值小于0.1。该FBG传感系统可为智能化复合材料冲击损伤自调整和自修复能力提供更准确的信息。
Abstract
The composite material is susceptible to external low-energy impact which causes invisible damage during service. In order to achieve the purpose of monitoring the health of the composite material, the fiber Bragg grating (FBG) sensor network was pasted and arranged on the surface of the carbon fiber composite material. The intelligent composite material impact location recognition technology based on the back propagation (BP) neural network system was used to obtain the time-domain signal response value of the FBG sensor to predict the impact position of the composite material. The results show that the BP neural network algorithm has the advantages of strong nonlinear approximation ability, high fault tolerance and strong adaptive ability. It can realize the parameterized identification and positioning of composite laminates, and the ratio of the prediction results to the total length of the composite laminates to be tested less than 0.1. The FBG sensing system provides more accurate information for the self-adjustment and self-repair capabilities of intelligent composite materials.
参考文献

[1] RAMLY R, KUNTJORO W, ABD-RAHMAN M K. Embedded FBG sensor in aircraft smart composite materials for structural monitoring[J]. Applied Mechanics and Materials,2013, 393:311-316.

[2] BAERE I, LUYCKX G, VOET E, et al. On the feasibility of optical fibre sensors for strain monitoring in thermoplastic composites under fatigue loading conditions[J]. Optics and Lasers in Engineering,2009, 47: 403-411.

[3] SIKDAR S, OSTACHOWICZ W, PAL J. Damage-induced acoustic emission source identification in an advanced sandwich composite structure[J].Steel and Composite Structures, 2018, 202 : 860-866.

[4] HU N M, CHEN Ch H, HOU H L, et al. Simulation research on damage characteristics of composite laminated plates under high-speed projectile impact [J]. Weapon Material Science and Engineering, 2017, 40(30): 66-69(in Chinese).

[5] YU T Y, ZHANG Z Y, SONG Sh T, et al. Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites[J]. Composite Structures, 2019(225): 111147.

[6] KOZIOL M, FIGLUS T. Evaluation of the failure progress in the static bending of GFRP laminates reinforced with a classic plain-woven fabric and a 3D fabric, by means of the vibrations analysis[J]. Polymers & Polymer Composites,2017, 38: 1070-1085.

[7] HO M, LAU K, AU H, et al. Structural health monitoring of an asymmetrical SMA reinforced composite using embedded FBG sensors[J]. Smart Materials & Structures, 2013, 22(12):125015.

[8] GAO L L. Development and application of fiber grating sensor encapsulated by resin-based composite material[D]. Ji’nan: Shandong University, 2018: 27-33 (in Chinese).

[9] MONIKA P, WALDEMAR S. Analysis of the possibility of non-de- structive testing to detect defects in multi-layered composites reinforced fibers by optical IR thermography [J].Composite Structures,2019, 213: 204-208.

[10] BEHESHTIZADEH N, MOSTAFAPOUR A, ABBASI H. Effect of fiber layout on signal analyzing of carbon/glass/epoxy hybrid composite laminates flexural loading using acoustic emission measurement[J]. Journal of the International Measurement Confederation, 2019, 136: 608-614.

[11] SUN J X. Research on composite material curing and impact damage monitoring based on bragg grating sensing[D]. Wuhan: Wuhan University of Technology, 2011: 8-20(in Chinese).

[12] KIRKBY E, OLIVEIRA R D, MICHAUD V, et al. Impact localisation with FBG for a self-healing carbon fibre composite structure[J]. Composite Structures, 2011, 94(1):8-14.

[13] KOZIOL M, FIGLUS T. Evaluation of the failure progress in the static bending of GFRP laminates reinforced with a classic plain-woven fabric and a 3D fabric, by means of the vibrations analysis[J].Polymers & Polymer Composites, 2017, 38: 1070-1085.

[14] REN T X. Research on optimal configuration of FBG sensors in damage detection of composite materials[D]. Qinhuangdao: Yanshan University, 2017: 43-51 (in Chinese).

[15] WANG Q L. Numerical value of thermal curing process of carbon fiber composite material and fiber grating monitoring[D]. Ji’nan:Shandong University, 2018: 37-44 (in Chinese).

[16] ANTONUCCI V, CUSANO A, GIORDANO M, et al. Cure-induced residual strain build-up in a thermoset resin[J].Composites, 2006, A37(4): 592-601.

[17] GU Sh Q, LIU Y F, LI J, et al. High-speed impact performance of carbon fiber/epoxy resin composite[J], Materials Engineering, 2019, 7(8):110-117(in Chinese).

[18] DONG B, TIAN L, PAN B. Tensile testing of carbon fiber multifilament using an advanced video extensometer assisted by dual-reflector imaging[J]. Measurement, 2019, 138: 325-331.

[19] MICLOS S, SAVASTRU D, SAVASTRU R, et al. Transverse mechanical stress and optical birefringence induced into singlemode optical fibre embedded in a smart polymer composite material[J]. Composite Structures, 2019, 218: 15-26.

[20] CHOI B, KWON I. Damage mapping using strain distribution of an optical fiber embedded in a composite cylinder after low-velocity impacts[J].Composites,2019, B173: 107009.

[21] TIBOR C. Analysis of the applicability of optical fibers as sensors for the structural health monitoring of polymer composites: The relationship between attenuation and the deformation of the fiber Gergely Heged[J].Sensors and Actuators, 2018, A272: 206-211.

[22] LIU T Y, MEI H Y, SUN Q, et al. Application of neural network in fault location of optical transport network[J]. China Communications, 2019, 16(10):214-225.

李蒙, 张翠, 童杏林, 邓承伟, 李浩洋, 何西琴, 冒燕. 基于BP算法和FBG传感的复合材料冲击定位检测技术[J]. 激光技术, 2022, 46(3): 320. LI Meng, ZHANG Cui, TONG Xinglin, DENG Chengwei, LI Haoyang, HE Xiqin, MAO Yan. Composite material impact location detection technology based on BP algorithm and FBG sensing[J]. Laser Technology, 2022, 46(3): 320.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!