光学学报, 2024, 44 (1): 0106016, 网络出版: 2024-01-05  

基于卡尔曼预测的光频域反射分布式光纤传感性能提升方法 下载: 523次亮点文章特邀研究论文

Performance Enhancement Method of Optical Frequency Domain Reflection Distributed Fiber Sensing Based on Kalman Prediction
作者单位
1 南京航空航天大学自动化学院,江苏 南京 211106
2 南方科技大学电子与电气工程系,广东 深圳 518055
3 高速载运设施的无损检测监控技术工信部重点实验室,江苏 南京 211106
4 鹏城实验室,广东 深圳 518055
5 智能光传感与调控技术教育部重点实验室,江苏 南京 210023
摘要
针对光频域反射(OFDR)分布式光纤传感在长距离、大量程应用场景中,参考光谱与测量光谱间的相似度(SD)退化及由此造成的鲁棒性下降的问题,本文研究了可调谐激光光源调谐非线性补偿模型,发现补偿的残余误差会引起传感单元产生随机位置偏差(PoD)。基于对PoD的统计学分析,建立了参考和测量光谱间SD的评价体系,并提出一种基于卡尔曼预测和局部寻优的传感单元随机PoD补偿方法,实现了参考和测量光谱位置的高效、精准匹配。本文所提方法能够在50 m的传感光纤上以5 mm的空间分辨率实现大量程传感(最高温度~450 ℃,最大应变~10000 με),且兼顾高鲁棒性和高速度(计算量可降低到原来的5.8%~28.6%)。这些优点使该方法能够广泛应用于现有的光频域反射分布式光纤传感系统。
Abstract
Objective

Distributed fiber optic sensing technology based on optical frequency domain reflectance (OFDR) has found extensive application in areas such as monitoring the health of structures and measuring temperature/strain in harsh environments. It has proven advantageous due to its ability to provide high spatial resolution, compact design, lightweight nature, and excellent immunity to electromagnetic interference. However, since the backward Rayleigh scattered light used for localization in OFDR is usually weak, the reduction in similarity (SD) between the reference spectrum and the measurement spectrum due to noise can significantly impact the robustness and accuracy of the system's measurements, especially in situations involving long distances, high temperatures, or a significant number of range strains. To address this problem, in this paper, we develop a tuning nonlinearity compensation model for tunable laser sources, finding that the residual tuning nonlinearity may lead to a random position deviation (PoD) for each sensing gauge. Based on the PoD statistical analysis, we build a system for evaluating the SD between the reference and measurement spectra. Combining with Kalman prediction and local search, the proposed method can match the reference and measurement spectra efficiently and accurately, resulting in compensation for the random PoD introduced in the sensing gauge of interest. We hope to extend the sensing range while realizing increased spatial resolution, robustness, and speed.

Methods

The research on tuning nonlinearity starts from the schematic diagram of a polarization diversity OFDR system. By examining the origins of its residual tuning nonlinearities, we employ statistical techniques to explore how they impact the PoD in each sensing gauge. The analyses illustrate that the innate noise from the tunable laser, similar to the outer strain or temperature variations, could contribute to the PoD. In particular, because of the statistical portrayal of the residual tuning nonlinearities, the additionally generated PoDs exhibit an approximately standard distribution. Based on this finding, we further design a process based on Kalman filtering (KF) and local search to compensate for the random PoDs from tuning nonlinearities, wherein two judgment conditions (JC1 and JC2) determine whether to enter/break the local search loop. Compared with other post-filtering methods, this method updates the measurement information by satisfying JC1 < TJC1 or minimizing JC2. This procedure is closer to real sensing scenarios and therefore improves the SD. Besides, we start the local search loop from the center (j = ±1) with higher probabilities to the distal (j = ±M) and break the loop once JC1 < TJC1. Thus, the presented strategy could accelerate the search process.

Results and Discussions

We compare the distributed sensing results recovered by the proposed method with the existing methods (Fig. 5). It is evident that the currently available approaches have limitations in terms of measurement length and strain/temperature measurement range due to the residual tuning nonlinearities. In contrast, the presented method can recover the strain/temperature distributed along the fiber axis without observing outliers, suggesting it can sufficiently compensate for the innate SD degradation due to the residual tuning nonlinearities. In particular, the robustness of the proposed method has a significant advantage when the measured strain or temperature is beyond 5000 με or 300 ℃, respectively. Additional examinations of the PoD random variations caused by the tuning nonlinearities and external stress indicate that the amplitude and range of the former are weaker (Fig. 7), implying that it is typically confined and temporary. The requirement to implement the adaptive judgment conditions JC1 and JC2 is verified in parallel. The distributed fiber optic strain/temperature sensing equipment and its software can achieve a sensing distance of greater than 150 m and a spatial resolution of 5 mm (Fig. 9), and the completion time of a single measurement under the full sensing range and the highest spatial resolution is less than 6 s. The system could measure strains varying from 2000 to 10000 με at about 140 m. A lateral comparison of each curve reveals that the shape of the data sets is similar, and the height of the "platform" is directly proportional to the applied strain. It is evident that the system effectively measures the magnitude and location of the sensing event; a horizontal comparison of the data sets demonstrates that the shape of the data sets is comparable, and the height of the "high platform" is linearly correlated to the applied strain.

Conclusions

In conclusion, the random PoD due to the residual tuning nonlinearities is theoretically verified to decrease the SD between the reference and measurement spectra in OFDR systems. A novel local search and dynamic prediction method based on KF is then proposed. This method can effectively compensate for the random PoD by local search and accelerate the search process by the KF prediction. Experiments show that the proposed method can significantly improve the robustness of the sensing system under the limited range (temperature of 450 ℃ and strain of 10000 με) sensing application. Moreover, it can compress the computation to 5.8%-28.6% of that without dynamic prediction operations.

1 引言

近年来,基于光频域反射(OFDR)原理的分布式光纤传感技术已经广泛应用于结构健康监测、恶劣环境下的温度和应变测量等场景,并展示出了空间分辨率高、结构紧凑、轻量化和抗电磁干扰性良好等优点1-2。与弱反射光纤光栅阵列的逐点访问相比,单模光纤中的后向瑞利散射为光纤自有的特性,不依赖于特定位置的折射率调制,这使得基于后向瑞利散射的OFDR系统能够实现无盲区的分布式传感3-5。但是,由于后向瑞利散射光的强度较光纤光栅反射更加微弱,噪声作用下参考光谱和测量光谱间的相似度(SD)的退化将显著影响系统测量的鲁棒性和精度,特别是在长距离、高温或大量程应变的测试场景中,这一问题将变得更加严峻6-9

目前,国内外针对参考光谱和测量光谱间的SD退化问题已经开展了一系列研究。例如,Feng等7发现,大应变下,参考光谱和测量光谱之间交叠比例的减少将显著影响互相关结果的信噪比(SNR)及系统的测量范围,而如果从参考光谱和测量光谱中提取更相似的局部指纹特征,再进行互相关处理,则能够使SD提高4倍,进而实现超过3000 µε的应变测量范围及3 mm的空间分辨率。之后,Luo等8分析了光热、光弹效应造成的光学路径位置偏移(PoD)以及由此导致的SD退化。通过迭代更新的方式,他们实现了对PoD累积效应的补偿和瑞利光谱互相关SD的提高,其装置在25 m的待测光纤上实现了0.5 mm的空间分辨率和高达2500 µε、500 ℃的测量范围。在此基础上,Li等9通过结合PoD补偿与图像小波去噪的方式进一步寻找了互相关SD最高的位置,其系统在~20 m位置处实现了200 µε到2000 µε范围内的应变测量,且精度从±80 µε提高到±20 µε。总体上,这些研究重点关注的是外部应变、温度变化引起的SD退化,而对于OFDR系统的内源性因素,如可调谐激光源(TLS)输出特性非理想所导致的SD退化,则没有足够重视10-13

在上述研究背景下,本文研究了可调谐激光光源调谐非线性补偿模型,发现补偿的残余误差会引起传感单元的随机位置偏差,并采用统计方法研究了其分布特征。为减小残余调谐非线性造成的不利影响,提出了基于卡尔曼滤波的光谱互相关SD局部寻优策略,以实现测量光谱和参考光谱的最相似位置匹配;在此基础上,根据卡尔曼滤波的动态预测和误差估计对SD局部寻优过程进行了加速。实验结果表明,相较于Luo等的算法未能考虑残余调谐非线性,本文提出的方法能够有效补偿调谐非线性残余误差引起的PoD波动,进而提高参考光谱和测量光谱之间的SD;同时,利用动态预测策略可使SD局部寻优的运算量降低到原来的5.8%~28.6%。在50 m长度的被测光纤(FUT)上,该方法实现了测量范围(最高温度~450 ℃,最大应变~10000 με)、鲁棒性和解调效率的提升。

2 基本原理(实验仿真)

2.1 调谐非线性补偿残余误差及其统计特征分析

图1展示了一套典型的偏振分集OFDR系统,其中,光耦合器(OC2、OC3)、光隔离器(ISO)、光纤延时线(DL)、法拉第反射镜(FM1、FM2)和光电二极管(PD1)构成的辅助干涉仪结构用以提供采样时钟(CLK),氰化氢气室(HCN cell)和光电二极管(PD2)用以监控TLS波长并提供采集触发信号(trig);光耦合器(OC4、OC5、OC6)、光环行器(OCir)、待测光纤(FUT)、光纤偏振分束器(PBS1、PBS2)和平衡光电探测器(BPD1、BPD2)构成了主干涉仪结构用以记录分布式传感信息(p-data、s-data)。当TLS运行无跳模时,TLS输出光束的相位ϕt随时间的变化可认为是高阶连续的,可根据泰勒展开得到辅助干涉仪相干探测信号的相位ϕct满足:

ϕct=ϕt+τ0-ϕt=ωtτ0+ϕNL

式中:τ0=2neffl0/c表示长度为l0、有效折射率为neff的光纤延时线所引入的时延,c表示真空中的光速;ωt=dϕ/dt表征了TLS输出光束的瞬时角频率;ϕNL=n=2dnϕn!dtnτ0n表征相干探测信号的非线性相位,它源自TLS输出光束的非线性相位e(t),且ϕNL=e(t+τ0)-e(t)e(t+τ0)表征延时τ0的扫频非线性成分。过零触发机制下,辅助干涉仪结构输出的两个相邻采样时钟应相差2π相位,由此可得

Δωi=ωti-ωti+1=2πτ0+n=2dnϕn!dtnt=ti+1-dnϕn!dtnt=tiτ0n-1

式中,非负整数i用来标记采样点的序号。

图 1. 典型偏振分集OFDR系统的原理示意图

Fig. 1. Schematic diagram of typical polarization diversity OFDR system

下载图片 查看所有图片

式(2)可知,当τ0趋向于零时,由于泰勒展开余项导致的频率采样误差将可以忽略,此时辅助干涉仪提供的采样时钟信号可认为是等频率间隔采样。因此,可以通过合理设计时钟信号的整形、放大硬件,即可实现短距离OFDR分布式传感应用7。但是,由于奈奎斯特采样定理的限制,辅助干涉仪的延时光纤长度至少为待测光纤长度的两倍,这导致在长距离的应用场景中,必须要考虑频率采样误差的影响。

扫频过程中TLS输出光束的相位ϕt对于研究其对PoD的影响至关重要。为仿真频率采样误差对PoD的影响,设置辅助干涉仪中DL的长度为300 m;FUT中感兴趣的传感单元分别位于距近端5、10、30、50 m位置处;TLS的扫频速率和扫频范围分别为20 nm/s和20 nm。

根据式(1),TLS扫频过程中PD1输出的光电流相位应由ϕt及经DL延时后的ϕt+τ0决定,当TLS近似以恒定速率调谐时,相干探测得到的相位可以拟合到一条直线,此时拟合的残差即为ϕNL。为进一步由ϕNL计算e(t),根据e(t)在频域内的泰勒展开14,依据e(t+τ0)-e(t)e(t)进行精准重构,有

e(t)ϕNLτ0+12dϕNLdt+τ012d2ϕNLdt2dt

2(a)和2(b)分别是TLS输出光束的相位实验单次测试结果中的ϕNL和重构的e(t),实验进行500次,获得TLS扫频的非线性相位e(t)的统计结果,作为研究扫频非线性影响PoD的输入数据。而后,利用e(t)生成辅助干涉仪时钟信号和固定传感位置的时域信号,利用辅助干涉仪ϕct相位展开信号的整周期对固定传感位置的时域信号进行重采样15-16,即可得到以辅助干涉仪作为采样时钟的固定传感位置的时域信号,并对传感信号进行傅里叶变换转换到光频域进行分析,如图3所示,可通过统计方法表征各传感单元在不同测量周期内的PoD随机特性。

图 2. TLS调谐非线性的分析。(a)相干探测信号的非线性相位;(b)TLS输出光束的非线性相位

Fig. 2. Analysis of TLS tuning nonlinearity. (a) Nonlinear phase of coherent detection signal; (b) nonlinear phase of TLS output beam

下载图片 查看所有图片

图 3. 频率采样误差作用下,不同位置传感单元的PoD统计结果。(a)概率密度函数;(b)累积分布函数

Fig. 3. PoD fluctuations of sensing gauges at different positions induced by frequency sampling error. (a) Probability density function; (b) cumulative distribution function

下载图片 查看所有图片

横向对比PoD分布的概率密度函数和累积分布函数,可发现各区间PoD的波动展示出一定的随机性,且离散的程度随时延的增加而增加(当感兴趣的传感单元从5 m位置处变化到50 m位置处时,位置测量的95%置信区间从~0.2 mm变化到~2.2 mm)。这表明频率采样的残余误差产生了一个内源性的PoD变化,将会对需要远距离、高空间分辨率的分布式传感应用产生显著影响。

2.2 基于卡尔曼滤波的局部寻优方法

为补偿频率采样误差造成的PoD波动,对图4所示的两段邻近传感单元进行分析。对于远离待测光纤近端的第n级传感单元,可认为其累积的PoD是第(n-1)级传感单元PoD累积量和第(n-1)级传感单元范围内PoD波动的叠加。根据2.1节的统计学分析可知,仅考虑频率采样误差贡献的PoD波动时,尽管第n级传感单元的PoD累积值相对于初始传感单元的PoD可能存在较大随机性,但由于第(n-1)级传感单元到第n级传感单元的附加时延很小,因此,以第(n-1)级传感单元PoD累积位置为中心,根据PoD的概率密度分布进行最相似位置的局部寻优(若考虑到传感单元上可能施加的温度和应力变化,可适当扩大寻优的范围)。

图 4. 通过局部寻优补偿PoD累积的原理示意图

Fig. 4. Schematic diagram of compensation of accumulated PoD through local search

下载图片 查看所有图片

通常,SD局部寻优算法涉及大量的傅里叶变换、傅里叶逆变换和互相关运算,将产生沉重的运算负担并显著影响系统的时效性。针对这一问题,进一步根据PoD波动的特点设计SD局部寻优的动态预测策略。考虑从第(n-1)级传感单元到第n级传感单元的PoD累积量更新,可以构建卡尔曼滤波器的预测方程17

x^n,n-1=x^n-1,n-1pn,n-1=pn-1,n-1+qn

以及更新方程

x^n,n=x^n,n-1+Kn(zn-x^n,n-1)Kn=pn,n-1/(pn,n-1+rn)pn,n=(1-Kn)pn,n-1

式中:zn表示测量光谱与参考光谱最相似位置的观测值,也即当前状态互相关运算的峰值位置;x^p分别表示最相似位置的预测值以及估计的误差,其脚标“n-1,n-1”、“nn”和“nn-1”分别表征了前一状态、当前状态以及预测的中间步骤;Kn表示卡尔曼增益;rn表示测量误差,对应了OFDR装置的测量标准差;qn表示运算误差,对应了分布式传感信号解调结果沿FUT轴向分布的方差,应当在应变/温度变化剧烈的位置取得更大的数值。

预测结果x^n,n与直接解调的结果zn之间的差值可作为SD寻优的主要判断条件(JC1)。此外,互相关运算结果的峰值也可以表征所提取测量光谱与参考光谱之间的SD分布情况,因而可作为局部寻优的辅助判断条件(JC2)。依照JC1和JC2两个判定条件,所设计的动态预测算法以伪代码的形式列写在表1中。其中,步骤L08和L12描述了如何利用JC1和JC2来判断局部寻优的结果是否可以接受,进而决定是否中止当前循环。在后续研究中,JC1的阈值TJC1被设置为rn的3倍,从而达到99.74%的置信水平;JC2的阈值TJC2可以在参考光谱自相关峰值的20%~60%范围内选择,可以在考虑光纤弯曲、散射损耗以及最终寻优结果的基础上进行适当调整。局部寻优的最大序数±M及相邻序数间的平移间隔由空间分辨率、折算到空间域的采样频率以及PoD波动的概率密度分布共同决定。

表 1. 卡尔曼动态预测局部寻优位置的伪代码

Table 1. Pseudo-code for Kalman dynamic prediction of local search location

Step No.Instruction
L01Sampling reference spectrum(ReS)in time domain and Fourier transforming it to spatial domain
L02Segment spatial domain according to distribution of sensing gauges along FUT7
L03Sampling measurement spectrum(MeaS)in time domain and Fourier transforming it to spatial domain
L04Initialization of Kalman filter,let ΣPoD=0
L05for i=1 to N
L06Shift ith measurement spectrum by ΣPoD(MeaSi)and correlate it in spatial domain with ith reference spectrum(ReSi),obtaining JC2 and sensing result in ith gauge(SRi
L07Kalman prediction according to Eqs.(4)-(8*,obtaining JC1,then initializing J=0
L08if(JC1>TJC1 and JC2<TJC2
L09for j=±1 to ±M (local search loop)**
L10Shift MeaSi by j positions and correlate it with ReSi,then update JC2 and sensing result(srij
L11Kalman prediction according to Eqs.(4)-(8),obtaining JC1
L12if(JC1<TJC1
L13Record SRi←srijJj
L14Break current local search loop
L15end
L16Search j minimize JC2,then record corresponding SRi←srijJj
L17end
L18end
L19Calculate PoD of MeaSi according to J,then update ΣPoD←ΣPoD+PoD
L20end

查看所有表

3 实验结果与讨论

根据图1所示的原理图搭建了实验装置。辅助干涉仪的延时光纤设置为300 m;FUT的长度为50 m;TLS的调谐速率和扫描范围分别为20 nm/s和~20 nm(氰化氢气室的R3波长为1539.78523 nm,P23波长为1560.71983 nm);OFDR解调时的空间分辨率设置为5 mm。利用机械拉伸装置(精度为5 με)和电加热箱(精度为0.5 ℃,温度控制范围为100~450 ℃)分别在FUT的近端和远端加载应力或温度。卡尔曼动态预测时,JC1判据的阈值TJC1被设置为150 pm2rn=50 pm2);JC2判据的阈值TJC2被设置为参考光谱自相关峰值的50%;局部寻优的最大序数M=100且相邻序数对应的传感区域间隔为2.5 mm。

图5对比了本文提出方法与文献[8]所报道方法恢复的分布式传感结果。可以看出,受调谐非线性的残余误差影响,文献[8]所报道方法在测量长度以及应变/温度测量范围等技术指标等方面都展示出受限的情况。而与之形成对比的是,本文提出的方法能够在原有方法失效的情形下恢复出沿光纤轴向分布的应变和温度,且没有观测到异常值。这表明提出的方法能够很好地补偿由于调谐非线性的残余误差导致的内源性SD退化。进一步横向分析提出方法对系统鲁棒性的提升效果,可看出该方法在测量应变大于5000 με或测试温度超过300 ℃时具有显著的优势。

图 5. 应变和温度的分布式传感结果。(a)应变和温度的全局分布;(b)应变传感单元;(c)温度传感单元

Fig. 5. Distributed sensing results of strain and temperature. (a) Global distributions of strain and temperature; (b) sensing gauge of strain; (c) sensing gauge of temperature

下载图片 查看所有图片

在此基础上,图6进一步绘制了局部寻优后测量光谱中心波长移动量随应变和温度的变化趋势。由最小二乘拟合可计算OFDR系统的应变和温度变化灵敏度分别为1.25 pm/με和14.08 pm/℃;拟合的残差分别为18.2 με和2.1 ℃,应变和温度测量非线性分别小于0.18%和0.53%。

图 6. 光谱中心移动随应变和温度的变化

Fig. 6. Spectral center shift with strain and temperature

下载图片 查看所有图片

图7展示了本文方法在测量5000 με应变时的PoD估计值。从图中可以看出,在zone 1(1.6~1.8 m)和zone 3(47.5~47.7 m)等存在应变或温度迅速变化的区域,所计算的PoD波动较大,这主要是由于应变和温度贡献了一部分PoD。而对于图中标出的其他PoD波动区域,如zone 2、zone 4和zone 5中的PoD波动较小,且影响范围也较小,这表明残余非线性引起的PoD波动通常发生在很短时间内,只能影响小段传感区域;此外zone 2、zone 4和zone 5中的PoD波动大小也不完全相同,这可以归因于TLS的调谐过程具有一定的随机性,通过设置自适应判据JC1和JC2以决定开启或中断局部寻优循环具有必要性。

图 7. 应变为5000 με时FUT轴向PoD的估计

Fig. 7. Estimation of axial PoD along FUT when strain is 5000 με

下载图片 查看所有图片

最后,比较采用与未采用卡尔曼动态预测的局部寻优效率。采用每组20次温度和应变传感数据分别利用传统数据解调方法和卡尔曼滤波动态预测数据解调方法进行测试,并得到互相关运算的操作数量的平均值。如图8所示,利用卡尔曼滤波动态预测的中断机制可将互相关运算的操作数减少到原来的5.8%~28.6%。由于每次互相关运算都需要伴随傅里叶变换和傅里叶逆变换等大型运算,因此,通过卡尔曼动态预测可大幅度减少互相关运算次数,特别是高温和大应变测量场景下,能够显著提高局部寻优及整个分布式传感信号解调的效率。

图 8. 采用/不采用卡尔曼预测时局部寻优的互相关运算量

Fig. 8. Amounts of cross-correlation operations in local search process with and without Kalman prediction

下载图片 查看所有图片

在以上理论研究的基础上,研制了如图9(a)所示的分布式光纤应变/温度传感装备及其软件,可实现优于150 m的传感距离和5 mm的空间分辨率,全传感距离、最高空间分辨率下单次测量完成时间≤6 s。如图9(b)所示,在光纤约140 m位置处施加2000 με到10000 με的应变进行测试,可发现系统能够很好地测量出应变的大小以及施加的位置;横向对比各组数据可发现,各组数据的形状相近,“高台”的高度与施加的应变呈线性关系。这些都表明所研制的设备能够实现长距离、大量程下的分布式传感,因此将在航天、航空、土木工程、基础设施监测等领域发挥重要的作用。

图 9. 提出OFDR系统的集成,(a)装置实物图;(b)应变测量结果

Fig. 9. Integration of proposed OFDR system. (a) Physical diagram of configuration; (b) results of strain measurement

下载图片 查看所有图片

4 结论

本文通过研究可调谐激光光源调谐非线性补偿模型,发现补偿残余误差会引起传感单元的随机位置偏差及降低参考光谱和测量光谱之间的SD,并采用统计方法研究了其分布特征。在此基础上,提出了一种基于卡尔曼预测和局部寻优的传感单元随机位置偏差补偿方法。一方面,通过局部寻找参考光谱和测量光谱的最相似位置以确定所分析传感单元的PoD变化;另一方面,构建了相似度评价体系和自适应判据,并利用卡尔曼预测加速最相似位置的搜索过程。实验结果表明,本文提出的方法能够在50 m长度的FUT上拓展OFDR分布式传感的测量范围(空间分辨率为5 mm,最高温度为450 ℃,最大应变为10000 με),并能够大幅度提升其鲁棒性和处理速率。

参考文献

[1] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639.

[2] Zhang P, Tang M, Gao F, et al. Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement[J]. IEEE Photonics Journal, 2015, 7(1): 7100210.

[3] 王紫超, 刘志昂, 杨华东. 光频域反射与超弱光纤布拉格光栅技术的结构监测性能[J]. 激光与光电子学进展, 2022, 59(21): 2106002.

    Wang Z C, Liu Z A, Yang H D. Optical frequency domain reflection and structural monitoring performance of ultra-weak fiber Bragg grating technology[J]. Laser & Optoelectronics Progress, 2022, 59(21): 2106002.

[4] 尹国路, 徐州, 朱涛. 光纤形状传感器封装过程中残余应力的分布式实时监测[J]. 光学学报, 2022, 42(16): 1606002.

    Yin G L, Xu Z, Zhu T. Distributed real-time monitoring of residual stress during packaging process of optical fiber shape sensor[J]. Acta Optica Sinica, 2022, 42(16): 1606002.

[5] 孙琪真, 李豪, 范存政, 等. 基于散射增强光纤的分布式声波传感研究进展[J]. 激光与光电子学进展, 2022, 59(21): 2100001.

    Sun Q Z, Li H, Fan C Z, et al. Research progress of distributed acoustic sensing based on scattering enhanced optical fiber[J]. Laser & Optoelectronics Progress, 2022, 59(21): 2100001.

[6] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.

[7] Feng K P, Cui J W, Jiang D, et al. Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum[J]. Optics Letters, 2018, 43(14): 3293-3296.

[8] Luo M M, Liu J F, Tang C J, et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 2019, 27(24): 35823-35829.

[9] Li P F, Fu C L, Du B, et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 2021, 39(19): 6334-6339.

[10] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 2008, 16(17): 13139-13149.

[11] Dang H, Tian Y Q, Liu H H, et al. Dynamic wavelength calibration based on synchrosqueezed wavelet transform[J]. Optics Express, 2022, 30(26): 46722-46733.

[12] 戴建平, 邱锦波, 刘宏睿, 等. 基于内调制DFB激光器的高空间分辨率TGD-OFDR[J]. 光学学报, 2023, 43(7): 0728001.

    Dai J P, Qiu J B, Liu H R, et al. High spatial resolution TGD-OFDR based on internally modulated DFB laser[J]. Acta Optica Sinica, 2023, 43(7): 0728001.

[13] 付彩玲, 彭振威, 李朋飞, 等. OFDR分布式光纤温度/应变/形状传感研究进展[J]. 激光与光电子学进展, 2023, 60(11): 1106007.

    Fu C L, Peng Z W, Li P F, et al. Research on distributed fiber temperature/strain/shape sensing based on OFDR[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106007.

[14] Du Y, Liu T G, Ding Z Y, et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 2014, 6(5): 7902811.

[15] Fang Z, Liang C S, Xu S W, et al. Spatial resolution enhancement of OFDR sensing system using phase-domain-interpolation resampling method[J]. IEEE Sensors Journal, 2022, 22(4): 3202-3210.

[16] Dang H, Liu H H, Cheng L Q, et al. Deconvolutional suppression of resolution degradation in coherent optical spectrum analyzer[J]. Journal of Lightwave Technology, 2023, 41(13): 4430-4436.

[17] LiQ, LiR Y, JiK F, et al. Kalman filter and its application[C]//2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), November 1-3, 2015, Tianjin, China. New York: IEEE Press, 2016: 74-77.

党竑, 马彬, 高超, 祖文龙, 程琳淇, 陈金娜, 刘奂奂, 冯昆鹏, 张旭苹, 沈平. 基于卡尔曼预测的光频域反射分布式光纤传感性能提升方法[J]. 光学学报, 2024, 44(1): 0106016. Hong Dang, Bin Ma, Chao Gao, Wenlong Zu, Linqi Cheng, Jinna Chen, Huanhuan Liu, Kunpeng Feng, Xuping Zhang, Ping Shen. Performance Enhancement Method of Optical Frequency Domain Reflection Distributed Fiber Sensing Based on Kalman Prediction[J]. Acta Optica Sinica, 2024, 44(1): 0106016.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!