硅酸盐通报, 2022, 41 (1): 302, 网络出版: 2022-08-04  

磁性羟基磷灰石制备的研究进展

Research Progress on Preparation of Magnetic Hydroxyapatite
作者单位
昆明理工大学材料科学与工程学院,昆明 650093
摘要
羟基磷灰石(HAP)是一种典型的生物活性材料,已在骨外科、牙科临床等方面得到了广泛的应用。由于HAP比表面积大,吸附能力强,HAP在药物递送、污水处理等领域也得到了广泛应用。磁性纳米颗粒具有良好的电磁性能、可回收性和电磁制热性能,已受到越来越多的关注。近年来,为了结合以上两种材料的优点,将磁性材料与羟基磷灰石相结合是上述领域研究应用的重点方向。此前,有综述报道过关于磁性羟基磷灰石复合材料的制备研究,但重点关注于与其他材料的复合,缺乏针对磁性羟基磷灰石制备方法的系统总结。本文以掺杂和包覆两种将磁性引入羟基磷灰石的方式为出发点,系统总结了磁性羟基磷灰石的经典制备方法及其优缺点,并讨论了其相关应用,特别是论述了进一步研究拓展的关键问题以及今后的研究趋势,以期为磁性羟基磷灰石的深入拓展提供参考。
Abstract
Hydroxyapatite (HAP) is a typical biomaterial, and has been widely used in the bone surgery and dental restoration. Owing to its large specific surface area and high absorbability, HAP has also been used in drug delivery and wastewater treatment. Due to its good electromagnetic property, easy recyclability, and distinct magneto thermoelectric effect, magnetic nanoparticles also gain more attention. To take both advantages, the combination of magnetic materials and HAP has become an important research direction in recent years. Although the preparation of hydroxyapatite composite materials in the past was reported, most of them only focused on the compositing materials and lacked the systematic summary on the synthesis methods. Based on the two ways of introducing magnetism into hydroxyapatite, doping and coating, the classical preparation methods, advantages and disadvantages of magnetic hydroxyapatite as well as the related applications were reviewed. The key problems of further research and future trends were discussed, in order to provide reference for the in-depth research and development of magnetic hydroxyapatite.
参考文献

[1] 高 卓.磁性纳米颗粒的制备及其在肿瘤诊断方面的应用研究[D].北京:北京化工大学,2016:1-13.

[2] ZILM M E, STARUCH M, JAIN M, et al. An intrinsically magnetic biomaterial with tunable magnetic properties[J]. Journal of Materials Chemistry B, 2014, 2(41): 7176-7185.

[3] MIOLA M, BELLARE A, LAVIANO F, et al. Bioactive superparamagnetic nanoparticles for multifunctional composite bone cements[J]. Ceramics International, 2019, 45(12): 14533-14545.

[4] MORTAZAVI-DERAZKOLA S, SALAVATI-NIASARI M, KHOJASTEH H, et al. Green synthesis of magnetic Fe3O4/SiO2/HAP nanocomposite for atenolol delivery and in vivo toxicity study[J]. Journal of Cleaner Production, 2017, 168: 39-50.

[5] YANG C T, LI K Y, MENG F Q, et al. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles[J]. Nanotechnology, 2018, 29(37): 375101.

[6] WU S C, HSU H C, LIU M Y, et al. Characterization of nanosized hydroxyapatite prepared by an aqueous precipitation method using eggshells and mulberry leaf extract[J]. Journal of the Korean Ceramic Society, 2021, 58(1): 116-122.

[7] WU H C, LIN J Y, WANG T W. Development of mesoporous magnetic hydroxyapatite nanocrystals[J]. Materials Science Forum, 2018, 916: 161-165.

[8] MOSIMAN D S, SUTRISNO A, FU R Q, et al. Internalization of fluoride in hydroxyapatite nanoparticles[J]. Environmental Science & Technology, 2021, 55(4): 2639-2651.

[9] FENG Y, GONG J L, ZENG G M, et al. Adsorption of Cd(Ⅱ) and Zn(Ⅱ) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal, 2010, 162(2): 487-494.

[10] MOHAMMADI-AGHDAM S, VALINEZHAD-SAGHEZI B, MORTAZAVI Y, et al. Modified Fe3O4/HAP magnetically nanoparticles as the carrier for ibuprofen: adsorption and release study[J]. Drug Research, 2019, 69(2): 93-99.

[11] HOU C H, HOU S M, HSUEH Y S, et al. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy[J]. Biomaterials, 2009, 30(23/24): 3956-3960.

[12] WU H C, WANG T W, SUN J S, et al. A novel biomagnetic nanoparticle based on hydroxyapatite[J]. Nanotechnology, 2007, 18(16): 165601.

[13] SHEN X X, GAO X, WEI W, et al. Combined performance of hydroxyapatite adsorption and magnetic separation processes for Cd(Ⅱ) removal from aqueous solution[J]. Journal of Dispersion Science and Technology, 2021, 42(5): 664-676.

[14] IANNOTTI V, ADAMIANO A, AUSANIO G, et al. Fe-doping-induced magnetism in nano-hydroxyapatites[J]. Inorganic Chemistry, 2017, 56(8): 4447-4459.

[15] XIAO X, YANG L, ZHOU D L, et al. Magnetic γ-Fe2O3/Fe-doped hydroxyapatite nanostructures as high-efficiency cadmium adsorbents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 548-557.

[16] CHANDRA V S, BASKAR G, SUGANTHI R V, et al. Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1200-1210.

[17] SATO M, NAKAHIRA A. Influence of Fe addition to hydroxyapatite by aqueous solution process[J]. Journal of the Ceramic Society of Japan, 2013, 121(1413): 422-425.

[18] GU L N, HE X M, WU Z Y. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery[J]. Materials Research Bulletin, 2014, 59: 65-68.

[19] KRAMER E R, MOREY A M, STARUCH M, et al. Synthesis and characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure[J]. Journal of Materials Science, 2013, 48(2): 665-673.

[20] CHEN G Y, ZHENG X Y, WANG C, et al. A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals[J]. RSC Advances, 2017, 7(89): 56537-56542.

[21] YUSOFF A H M, SALIMI M N, GOPINATH S C B, et al. Catechin adsorption on magnetic hydroxyapatite nanoparticles: a synergistic interaction with calcium ions[J]. Materials Chemistry and Physics, 2020, 241: 122337.

[22] PANDI K, VISWANATHAN N. In situ fabrication of magnetic iron oxide over nano-hydroxyapatite gelatin eco-polymeric composite for defluoridation studies[J]. Journal of Chemical & Engineering Data, 2016, 61(1): 571-578.

[23] JIANG M, TERRA J, ROSSI A M, et al. Fe2+/Fe3+substitution in hydroxyapatite: theory and experiment[J]. Physical Review B, 2002, 66(22): 224107.

[24] 王小龙,任忠鸣,常 江.铁掺杂羟基磷灰石的制备及在强磁场中的定向研究[J].无机材料学报,2018,33(1):75-80.

[25] KANCHANA P, LAVANYA N, SEKAR C. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles[J]. Materials Science and Engineering: C, 2014, 35: 85-91.

[26] ROBLES-GUILA M J, REYES-AVENDAO J A, MENDOZA M E. Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method[J]. Ceramics International, 2017, 43(15): 12705-12709.

[27] CAMAIONI A, CACCIOTTI I, CAMPAGNOLO L, et al. Silicon-substituted hydroxyapatite for biomedical applications[M]//Hydroxyapatite (HAP) for Biomedical Applications. Amsterdam: Elsevier, 2015: 343-373.

[28] BRACCI B, TORRICELLI P, PANZAVOLTA S, et al. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings[J]. Journal of Inorganic Biochemistry, 2009, 103(12): 1666-1674.

[29] OLIVEIRA P H Jr, SANTANA L A B Jr, FERREIRA N S Jr, et al. Manganese behavior in hydroxyapatite crystals revealed by X-ray difference Fourier maps[J]. Ceramics International, 2020, 46(8): 10585-10597.

[30] ZILM M E, CHEN L, SHARMA V, et al. Hydroxyapatite substituted by transition metals: experiment and theory[J]. Physical Chemistry Chemical Physics, 2016, 18(24): 16457-16465.

[31] LI Y, WIDODO J, LIM S, et al. Synthesis and cytocompatibility of manganese(Ⅱ) and iron(Ⅲ) substituted hydroxyapatite nanoparticles[J]. Journal of Materials Science, 2012, 47(2): 754-763.

[32] ZILM M E, YU L, HINES W A, et al. Magnetic properties and cytocompatibility of transition-metal-incorporated hydroxyapatite[J]. Materials Science & Engineering C, Materials for Biological Applications, 2018, 87: 112-119.

[33] RAJGOPAL V, GONSALVES C, KALRA V K. Response to comment on “A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells”[J]. The Journal of Immunology, 2007, 178(8): 4707-4708.

[34] PACARY E, LEGROS H, VALABLE S, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells[J]. Journal of Cell Science, 2006, 119(pt 13): 2667-2678.

[35] BOSE S, FIELDING G, TARAFDER S, et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends in Biotechnology, 2013, 31(10): 594-605.

[36] KULANTHAIVEL S, ROY B, AGARWAL T, et al. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application[J]. Materials Science and Engineering: C, 2016, 58: 648-658.

[37] BHATTACHARJEE A, GUPTA A, VERMA M, et al. Antibacterial and magnetic response of site-specific cobalt incorporated hydroxyapatite[J]. Ceramics International, 2020, 46(1): 513-522.

[38] PASANDIDEH Z, TAJABADI M, JAVADPOUR J, et al. The effects of Fe3+ and Co2+ substitution in Ca10-x-yFexCoy(PO4)6(OH)2 hydroxyapatite nanoparticles: magnetic, antibacterial, and improved drug release behavior[J]. Ceramics International, 2020, 46(10): 16104-16118.

[39] LIU Y, SUN Y, CAO C, et al. Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods[J]. Biomaterials, 2014, 35(10): 3348-3355.

[40] KAMAL H, HEZMA A. Spectroscopic investigation and magnetic study of iron, manganese, copper and cobalt-doped hydroxyapatite nanopowders[J]. Physical Science International Journal, 2015, 7(3): 137-151.

[41] 崔慧慧,黄 超,邱呈雨,等.超顺磁性Fe3O4@HA纳米微球的构建与性能研究[J].科技展望,2016,26(35):85-86.

[42] GHASEMI E, SILLANP M. Ultrasound-assisted solid-phase extraction of parabens from environmental and biological samples using magnetic hydroxyapatite nanoparticles as an efficient and regenerable nanosorbent[J]. Microchimica Acta, 2019, 186(9): 622.

[43] 杨慧慧,张 浩,黄传军,等.磁性羟基磷灰石的制备及其Pb(Ⅱ)吸附性能[J].材料研究学报,2012,26(6):621-626.

[44] GOPALAKANNAN V, PERIYASAMY S, VISWANATHAN N. Fabrication of magnetic particles reinforced nano-hydroxyapatite/gelatin composite for selective Cr(Ⅵ) removal from water[J]. Environmental Science: Water Research & Technology, 2018, 4(6): 783-794.

[45] ZENG D J, DAI Y, ZHANG Z B, et al. Magnetic solid-phase extraction of U(Ⅵ) in aqueous solution by Fe3O4@hydroxyapatite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(3): 1329-1337.

[46] WAKIYA N, YAMASAKI M, ADACHI T, et al. Preparation of hydroxyapatite-ferrite composite particles by ultrasonic spray pyrolysis[J]. Materials Science and Engineering: B, 2010, 173(1/2/3): 195-198.

[47] INUKAI A, SAKAMOTO N, AONO H, et al. Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(7): 965-969.

[48] THENMOZHI R, MOORTHY M S, SIVAGURU J, et al. Synthesis of silica-coated magnetic hydroxyapatite composites for drug delivery applications[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 1951-1958.

[49] 穆寄林,陈维俱,林 皓,等.磁性羟基磷灰石的制备及其除氟性能研究[J].硅酸盐通报,2017,36(8):2659-2667.

[50] CUI W, HU Q L, WU J, et al. Preparation and characterization of magnetite/hydroxyapatite/chitosan nanocomposite by in situ compositing method[J]. Journal of Applied Polymer Science, 2008, 109(4): 2081-2088.

[51] IWASAKI T, NAKATSUKA R, MURASE K, et al. Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route[J]. International Journal of Molecular Sciences, 2013, 14(5): 9365-9378.

[52] 张春晗.磁性羟基磷灰石复合材料的制备及其吸附性能研究[D].沈阳:沈阳大学,2017:29-42.

[53] PHASUK A, SRISANTITHAM S, TUNTULANI T, et al. Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics[J]. Adsorption, 2018, 24(2): 157-167.

[54] RIMINUCCI A, DIONIGI C, PERNECHELE C, et al. Magnetic and morphological properties of ferrofluid-impregnated hydroxyapatite/collagen scaffolds[J]. Science of Advanced Materials, 2014, 6(12): 2679-2687.

李静, 刘金坤, 颜廷亭, 冷崇燕, 陈希亮, 陈庆华. 磁性羟基磷灰石制备的研究进展[J]. 硅酸盐通报, 2022, 41(1): 302. LI Jing, LIU Jinkun, YAN Tingting, LENG Chongyan, CHEN Xiliang, CHEN Qinghua. Research Progress on Preparation of Magnetic Hydroxyapatite[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 302.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!