激光技术, 2023, 47 (2): 205, 网络出版: 2023-04-12  

光学多普勒无创血流测量技术的发展与现状

Development and status of optical Doppler noninvasive blood flow measurement technology
叶枫 1,2侯昌伦 1,2
作者单位
1 杭州电子科技大学 电子信息学院, 杭州 310018
2 杭州电子科技大学 浙江省装备电子研究重点实验室, 杭州 310018
引用该论文

叶枫, 侯昌伦. 光学多普勒无创血流测量技术的发展与现状[J]. 激光技术, 2023, 47(2): 205.

YE Feng, HOU Changlun. Development and status of optical Doppler noninvasive blood flow measurement technology[J]. Laser Technology, 2023, 47(2): 205.

参考文献

[1] WU J S, CHEN X Ch, LU D. Laser Doppler flowmetry[J]. Chinese Journal of Laser Medicine & Surgery, 1999, 8(3):185-187(in Chinese).

[2] YANG X J, HAN J Q.Application of laser Doppler flowmetry in the study of tumor angiogenesis[C]//Compilation of 2014 National Academic Conference of China microcirculation Society.Suzhou, China: Society of Microcirculation, 2014: 51-52.

[3] HU J, CHEN W P, LI X Q, et al. Experimental study on biological effects of He-Ne laser on scalded rat skin[J].Chinese Journal of Ethnomedicine and Ethnopharmacy, 2010, 19(13):75(in Chinese).

[4] FOLDVARI M, OGUEJIOFOR C J N, WILSON T W, et al. Transcutaneous delivery of prostaglandin E1: in vitro and laser Doppler flowmetry study[J]. Journal of Pharmaceutical Sciences, 1998, 87(6):721-725.

[5] HOU X, HE X F, ZHANG X Y, et al. Using laser Doppler flowmetry with wavelet analysis to study skin blood flow regulations after cupping therapy[J]. Skin Research and Technology, 2021, 27(3): 393-399.

[6] YAN D D, ZHANG Zh. New progress in the study of coronary slow flow[J]. Chinese Circulation Journal, 2019, 34(3):309-312(in Chinese).

[7] ELGHAFFAR S A, SHEIKH R A, GAAFAR A, et al. Assessment of risk factors, clinical presentation and angiographic profile of coronary slow flow phenomenon[J]. Journal of Indian College of Cardiology, 2022, 12(1): 19-24.

[8] PRESURA C, AKKERMANS A, HEINKS C, et al. Optical blood flow sensor using self-mixing doppler effect:US, WO2006085278A2[P]. 2007-11-28.

[9] CHANG P F. Laser Doppler blood flow measurement and its application in neurosurgery[J]. International Journal of Cerebrovascular Diseases, 1996, 4(2): 95-97(in Chinese).

[10] HUANG Y, QIU L, MEI A L, et al. Meta analysis of the value of laser Doppler imaging in the diagnosis of burn depth[J].Chinese Journal of Burns, 2017, 33(5):301-308(in Chinese).

[11] CLAES K E Y, HOEKSEMA H, VYNCKE T, et al. Evidence based burn depth assessment using laser-based technologies: Where do we stand[J]. Journal of Burn Care & Research, 2020, 42(3): 513-525.

[12] ZHENG K J, MIDDELKOOP E, STOOP M, et al. Validity of laser speckle contrast imaging for the prediction of burn wound healing potential[J]. Burns, 2021, 48(2): 45-48.

[13] TOWNSEND R, CRINGLE S J, MORGAN W H, et al. Confocal laser Doppler flowmeter measurements in a controlled flow environment in an isolated perfused eye[J]. Experimental Eye Research, 2005, 82(1):65-73.

[14] VENKATARAMAN S T, HUDSON C, FISHER J A, et al. Retinal arteriolar and capillary vascular reactivity in response to isoxic hypercapnia[J]. Experimental Eye Research, 2008, 87(6): 535-542.

[15] FENG D L, WEI D, LI F, et al. Diagnostic value of HRF, OCT and RBP4 in diabetic retinopathy[J].Medical Journal of Air Force, 2019, 35(4):347-349(in Chinese).

[16] MILLET C, ROUSTIT M, BLAISE S, et al. Comparison between laser speckle contrast imaging and laser Doppler imaging to assess skin blood flow in humans[J]. Microvascular Research, 2011, 82(2):147-151.

[17] WEI X F, HU J B, HE R, et al. Measurement of blood velocity by Doppler effect in College Physics Course[J]. Journal of West Anhui University, 2018, 34(2): 100-104(in Chinese).

[18] LIU R L. Solid motion motion measurement based on laser Doppler principle[D]. Qingdao: Qingdao University, 2018: 43-54(in Chinese).

[19] ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1): 103-108(in Chinese).

[20] TAN Y, GAN X H, ZHANG D J, et al. Laser Doppler vibration signal processing based on wavelet denoising[J]. Laser Technology, 2022, 46(1): 129-133(in Chinese).

[21] DORNHORST A C. Review of medical physiology[J]. Anesthesiology, 2001, 52(2): 959-960.

[22] RIVA C, ROSS B, BENEDEK G B. Laser Doppler measurements of blood flow in capillary tubes and lretinal arteries [J]. Investigative Ophthalmology, 1972, 11(11): 936-944.

[23] STERN M D. In vivo evaluation of microcirculation by coherent light scattering [J]. Nature, 1975, 254(5495): 56-58.

[24] BONNER R, NOSSAL R. Model for laser Doppler measurements of blood flow in tissue[J]. Applied Optics, 1981, 20(12): 2097-2107.

[25] ALSBJRN B, MICHEELS J, SRENSEN B. Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns[J]. Scandinavian Journal of Plastic and Reconstructive Surgery, 1984, 18(1): 75-79.

[26] DROOG E J, STEENBERGEN W, SJBERG F. Measurement of depth of burns by laser Doppler perfusion imaging[J]. Burns, 2001, 27(6): 561-568.

[27] KYODEN T, ABE S, ISHIDA H, et al. High-resolution in-situ LDV monitoring system for measuring velocity distribution in blood vessel[J]. Optics Communications, 2015, 353:122-132.

[28] ARILDSSON M L, NILSSON G E, WARDELL K. Critical design parameters in laser Doppler perfusion imaging[J]. Proceedings of the SPIE, 1996, 2878:239527.

[29] ALEXANDER S, WIENDELT S, FRITS D M. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor[J]. Optics Letters, 2002, 27(5): 300-302.

[30] ALEXANDRE S, THEO L. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor[J]. Optics Express, 2005, 3(17): 6416-6428.

[31] MENNES O A, NETTEN J J V, SLART R H J A, et al. Novel optical techniques for imaging microcirculation in the diabetic foot[J]. Current Pharmaceutical Design, 2018, 24(12): 1304-1316.

[32] HE D W, NGUYEN H, HAYES-GILL B, et al. Laser Doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing[J]. Sensors, 2013, 13(9): 12632-12647.

[33] WANG G. Research on key technologies of laser Doppler blood flow velocity system[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 91-105(in Chinese).

[34] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[35] FERCHER A F, HITZENBERGER C K, DREXLER W, et al. In vivo optical coherence tomography[J]. American Journal of Ophthalmology, 1993, 116(1):113-114.

[36] YU L Zh, SHEN X. Research progress in diagnosis of eye diseases using optical coherence tomography angiography[J]. Journal of Shanghai Jiaotong University(Medical Science Edition), 2018, 38(7): 829-834(in Chinese).

[37] PUJARI A, SALUJA G, CHAWLA R, et al. Optical coherence tomography angiography in amblyopia: A critical update on current understandings and future perspectives[J]. European Journal of Ophthalmology, 2021, 32(3): 1324-1332.

[38] KAMALIPOUR A, MOGHIMI S, HOU H, et al. OCT angiography artifacts in glaucoma[J]. Ophthalmology, 2021, 128(10): 1426-1437.

[39] HU X X, WANG X L, DAI Y, et al. Effect of nimodipine on macular and peripapillary capillary vessel density in patients with normal-tension glaucoma using optical coherence tomography angiography[J]. Current Eye Research, 2021, 46(12): 1-6.

[40] FENG Y. Analysis and study of the macular of retina inanisometropic amblyopia based on OCTA[D].Nanchang: Nanchang University, 2021:22-31(in Chinese).

[41] SONMEZ H K, POLAT O A, ERKAN G. Inner retinal layer ischemia and vision loss after COVID-19 infection: A case report [J]. Photodiagnosis and Photodynamic Therapy, 2021, 35: 102406.

[42] BILBAOMALAV V, GONZLEZ Z J, MANUEL S D V, et al. Persistent retinal microvascular impairment in COVID-19 bilateral pneumonia at 6-months follow-up assessed by optical coherence tomography angiography[J]. Biomedicines, 2021, 9(5): 502.

[43] GUEMES-VILLAHOZ N, BURGOS-BLASCO B, VIDAL-VILLEGAS B, et al. Reduced macular vessel density in COVID-19 patients with and without associated thrombotic events using optical coherence tomography angiography[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 2021, 259(8): 1-7.

[44] FANG L, CHEN Zh, ZHANG X R. Advantages of optical coherence tomography angiography in early diagnosis of glaucoma[J]. China Medical Devices, 2021, 36(11): 150-154(in Chinese).

[45] MIURA M, MURAMATSU D, HONG Y J, et al. Noninvasive vascular imaging of ruptured retinal arterial macroaneurysms by Doppler optical coherence tomography[J]. BMC Ophthalmology, 2015, 15(1):1-5.

[46] LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: Principles and recent developments[J]. Chinese Optics, 2020, 13(5): 919-935(in Chinese).

[47] WANG L W, CUI L, ZOU J X, et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. International Eye Science, 2019, 19(8): 1361-1364(in Chinese).

[48] ZHONG Y, CHE H X. Detective values of optical coherence tomography angiography for primary glaucoma[J]. Recent Advances in Ophthalmology, 2018, 38(4): 352-356(in Chinese).

[49] SAKAI J, MINAMIDE K J, NAKAMURA S, et al. Retinal arteriole pulse waveform analysis using a fully-automated Doppler optical coherence tomography flowmeter:A pilot study[J]. Translational Vision Science & Technology, 2019, 8(3):13.

[50] KISELEVA E, RYABKOV M, BALEEV M, et al. Prospects of intraoperative multimodal OCT application in patients with acute mesenteric ischemia[J]. Diagnostics, 2021, 11(4): 705.

[51] WEI Y Zh, YUAN Q, LAN G P, et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400002(in Chinese).

[52] ZHU M Q, ZHANG M Y, XU K, et al. The methods and research progress of photoacoustic blood flow velocity measurement[J]. Optical Instruments, 2021, 43(1):88-94(in Chinese).

[53] GIFANI M, EDDINS D J, KOSUGE H, et al. Ultraselective carbon nanotubes for photoacoustic imaging of inflamed atherosclerotic plaques[J]. Advanced Functional Materials, 2021, 31(37):2101005.

[54] AMIDI E, YANG G, UDDIN K M S, et al. Role of blood oxygenation saturation in ovarian cancer diagnosis using multi-spectral photoacoustic tomography[J]. Journal of Biophotonics, 2020, 14(4): e202000368.

[55] YIN R Y, TONG Y, ZHAO Y Q, et al. Optical Doppler technologies for micro-circulation measurement and their recent progress[J]. Optical Technique, 2013, 39(2): 112-123(in Chinese).

[56] BELL A G. Upon the production and reproduction of sound by light[J]. American Journal of Society, 1880, S3-20(118): 305-324.

[57] SHEINFELD A, GILEAD S, EYAL A. Photoacoustic Doppler measurement of flow using tone burst excitation[J]. Optics Express, 2010, 18(5):4212-4221.

[58] HUANG Sh Sh, NIE L M. Recent progresses of photoacoustic imaging in biomedical applications[J]. Journal of Xiamen University(Natural Science Edition), 2019, 58(5): 625-636(in Chinese).

[59] VALLURU K S, WILLMANN J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4): 267-280.

[60] MIAO Q Q, LYU Y, DING D, et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 2016, 28(19): 3662-3670.

[61] DENG H, SHANG W, LU G, et al. Targeted and multifunctional technology for identification between hepatocellular carcinoma and liver cirrhosis[J]. ACS Applied Materials & Interfaces, 2019, 11(16):14526-14537.

[62] ZHANG J Y, XIE W M, ZENG Zh P, et al. Recent progress in photoacoustic imaging technology[J]. Chinese Optics, 2011, 4(2):111-117(in Chinese).

[63] QIAO W, CHEN Ch J. Noncontact photoacoustic Doppler flowmetry based on optical coherent detection[J]. Acta Laser Biology Sinica, 2018, 27(4): 338-344(in Chinese).

[64] YANG Ch. Photoacoustic lmaging with enhanced sensitivity, resolution and speed[D]. Hefei: University of Science and Technology of China, 2021:62-88(in Chinese).

[65] GONG F, CHENG L, LIU Zh. Application of nanoprobes in photoacoustic cancer imaging[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180004.

[66] LIN R Q, LENG J, CHEN J Q, et al. Photoacoustic lmaging technology for clinical applications[J]. China Medical Devices, 2018, 33(1):1-5(in Chinese).

[67] VENKATESH R, JAYADEV C, SRIDHARAN A, et al. Internal limiting membrane detachment in acute central retinal artery occlusion: A novel prognostic sign seen on OCT[J]. International Journal of Retina and Vitreous, 2021, 7(1):51.

[68] ZHANG H F, PULIAFITO C A, JIAO Sh L. Photoacoustic ophthalmoscopy for in vivo retinal imaging: Current status and prospects[J]. Ophthalmic Surgery, Lasers & Imaging, 2011, 42(s0): 106-115.

[69] SONG W. Investigation of photoacousticimaging on optical absorption property of retina[D]. Harbin: Harbin Institute of Technology, 2014: 73-102(in Chinese).

[70] QI W Zh. Optical-resolution photoacoustic microscopy for early-stage oral cancer detection[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 53-62(in Chinese).

[71] DENIZ E, MISEMILY K, LANE M, et al. CRISPR/Cas9 F0 screening of congenital heart disease genes in xenopus tropicalis.[J]. Methods in Molecular Biology, 2018, 1865: 163-174.

[72] WANG L, JIN B Zh, ZHANG X Zh. Effects of the monitoring of cerebral blood flow in the preparation of cerebral ischemia model in rats[J].Chinese Journal of Cerebrovascular Diseases, 2017, 14(5):254-260(in Chinese).

[73] ZHANG Zh, TANG W W, LI Y F, et al. Bioinspired conjugated tri-porphyrin-based intracellular ph-sensitive metallo-supramolecular nanoparticles for near-infrared photoacoustic imaging-guided chemo- and photothermal combined therapy[J]. ACS Biomaterials Science & Engineering, 2021, 7(9): 4503-4508.

[74] WANG Y M, BOWER B A, IZATT J A, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography[J]. Journal of Biomedical Optics, 2007, 12(4): 041215.

[75] PAN L H, ZHANG X Y, LI Zh L, et al. Blood flow measurementwith photoacoustic microscopy and optical coherence tomography[J]. Chinese Journal of Lasers, 2018, 45(6): 0607004(in Chinese).

[76] SABIONI L, de LORENZO A, LAMAS C, et al. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis[J]. Microvascular Research, 2021, 134: 104119.

叶枫, 侯昌伦. 光学多普勒无创血流测量技术的发展与现状[J]. 激光技术, 2023, 47(2): 205. YE Feng, HOU Changlun. Development and status of optical Doppler noninvasive blood flow measurement technology[J]. Laser Technology, 2023, 47(2): 205.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!