激光技术, 2023, 47 (2): 205, 网络出版: 2023-04-12  

光学多普勒无创血流测量技术的发展与现状

Development and status of optical Doppler noninvasive blood flow measurement technology
叶枫 1,2侯昌伦 1,2
作者单位
1 杭州电子科技大学 电子信息学院, 杭州 310018
2 杭州电子科技大学 浙江省装备电子研究重点实验室, 杭州 310018
摘要
基于光学多普勒效应的无创血流测量技术具有实时性、无需介质、非侵入式等性质, 在临床医疗等领域存在着极大价值与应用前景。目前光学无创血流测量技术主要有激光多普勒血流测量技术、光学相干层析多普勒成像技术和光声多普勒血流测量技术。对这3种技术进行了原理分析, 简述了其研究现状, 并对这些新型技术的未来和发展进行了展望。
Abstract
Due to the properties of real-time, medium-free, and non-invasive, the optical Doppler effect based non-invasive blood flow measurement is valuable and has a promising future in clinical and other fields. At present, there are three optical non-invasive blood flow measurement technologies: laser Doppler blood flow measurement technology, optical coherence tomography Doppler imaging technology, and photo-acoustic Doppler blood flow measurement technology. The principles of the above three technologies were briefly analyzed, the respective development status was described, and the future and development of these new technologies were exhibited.
参考文献

[1] WU J S, CHEN X Ch, LU D. Laser Doppler flowmetry[J]. Chinese Journal of Laser Medicine & Surgery, 1999, 8(3):185-187(in Chinese).

[2] YANG X J, HAN J Q.Application of laser Doppler flowmetry in the study of tumor angiogenesis[C]//Compilation of 2014 National Academic Conference of China microcirculation Society.Suzhou, China: Society of Microcirculation, 2014: 51-52.

[3] HU J, CHEN W P, LI X Q, et al. Experimental study on biological effects of He-Ne laser on scalded rat skin[J].Chinese Journal of Ethnomedicine and Ethnopharmacy, 2010, 19(13):75(in Chinese).

[4] FOLDVARI M, OGUEJIOFOR C J N, WILSON T W, et al. Transcutaneous delivery of prostaglandin E1: in vitro and laser Doppler flowmetry study[J]. Journal of Pharmaceutical Sciences, 1998, 87(6):721-725.

[5] HOU X, HE X F, ZHANG X Y, et al. Using laser Doppler flowmetry with wavelet analysis to study skin blood flow regulations after cupping therapy[J]. Skin Research and Technology, 2021, 27(3): 393-399.

[6] YAN D D, ZHANG Zh. New progress in the study of coronary slow flow[J]. Chinese Circulation Journal, 2019, 34(3):309-312(in Chinese).

[7] ELGHAFFAR S A, SHEIKH R A, GAAFAR A, et al. Assessment of risk factors, clinical presentation and angiographic profile of coronary slow flow phenomenon[J]. Journal of Indian College of Cardiology, 2022, 12(1): 19-24.

[8] PRESURA C, AKKERMANS A, HEINKS C, et al. Optical blood flow sensor using self-mixing doppler effect:US, WO2006085278A2[P]. 2007-11-28.

[9] CHANG P F. Laser Doppler blood flow measurement and its application in neurosurgery[J]. International Journal of Cerebrovascular Diseases, 1996, 4(2): 95-97(in Chinese).

[10] HUANG Y, QIU L, MEI A L, et al. Meta analysis of the value of laser Doppler imaging in the diagnosis of burn depth[J].Chinese Journal of Burns, 2017, 33(5):301-308(in Chinese).

[11] CLAES K E Y, HOEKSEMA H, VYNCKE T, et al. Evidence based burn depth assessment using laser-based technologies: Where do we stand[J]. Journal of Burn Care & Research, 2020, 42(3): 513-525.

[12] ZHENG K J, MIDDELKOOP E, STOOP M, et al. Validity of laser speckle contrast imaging for the prediction of burn wound healing potential[J]. Burns, 2021, 48(2): 45-48.

[13] TOWNSEND R, CRINGLE S J, MORGAN W H, et al. Confocal laser Doppler flowmeter measurements in a controlled flow environment in an isolated perfused eye[J]. Experimental Eye Research, 2005, 82(1):65-73.

[14] VENKATARAMAN S T, HUDSON C, FISHER J A, et al. Retinal arteriolar and capillary vascular reactivity in response to isoxic hypercapnia[J]. Experimental Eye Research, 2008, 87(6): 535-542.

[15] FENG D L, WEI D, LI F, et al. Diagnostic value of HRF, OCT and RBP4 in diabetic retinopathy[J].Medical Journal of Air Force, 2019, 35(4):347-349(in Chinese).

[16] MILLET C, ROUSTIT M, BLAISE S, et al. Comparison between laser speckle contrast imaging and laser Doppler imaging to assess skin blood flow in humans[J]. Microvascular Research, 2011, 82(2):147-151.

[17] WEI X F, HU J B, HE R, et al. Measurement of blood velocity by Doppler effect in College Physics Course[J]. Journal of West Anhui University, 2018, 34(2): 100-104(in Chinese).

[18] LIU R L. Solid motion motion measurement based on laser Doppler principle[D]. Qingdao: Qingdao University, 2018: 43-54(in Chinese).

[19] ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1): 103-108(in Chinese).

[20] TAN Y, GAN X H, ZHANG D J, et al. Laser Doppler vibration signal processing based on wavelet denoising[J]. Laser Technology, 2022, 46(1): 129-133(in Chinese).

[21] DORNHORST A C. Review of medical physiology[J]. Anesthesiology, 2001, 52(2): 959-960.

[22] RIVA C, ROSS B, BENEDEK G B. Laser Doppler measurements of blood flow in capillary tubes and lretinal arteries [J]. Investigative Ophthalmology, 1972, 11(11): 936-944.

[23] STERN M D. In vivo evaluation of microcirculation by coherent light scattering [J]. Nature, 1975, 254(5495): 56-58.

[24] BONNER R, NOSSAL R. Model for laser Doppler measurements of blood flow in tissue[J]. Applied Optics, 1981, 20(12): 2097-2107.

[25] ALSBJRN B, MICHEELS J, SRENSEN B. Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns[J]. Scandinavian Journal of Plastic and Reconstructive Surgery, 1984, 18(1): 75-79.

[26] DROOG E J, STEENBERGEN W, SJBERG F. Measurement of depth of burns by laser Doppler perfusion imaging[J]. Burns, 2001, 27(6): 561-568.

[27] KYODEN T, ABE S, ISHIDA H, et al. High-resolution in-situ LDV monitoring system for measuring velocity distribution in blood vessel[J]. Optics Communications, 2015, 353:122-132.

[28] ARILDSSON M L, NILSSON G E, WARDELL K. Critical design parameters in laser Doppler perfusion imaging[J]. Proceedings of the SPIE, 1996, 2878:239527.

[29] ALEXANDER S, WIENDELT S, FRITS D M. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor[J]. Optics Letters, 2002, 27(5): 300-302.

[30] ALEXANDRE S, THEO L. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor[J]. Optics Express, 2005, 3(17): 6416-6428.

[31] MENNES O A, NETTEN J J V, SLART R H J A, et al. Novel optical techniques for imaging microcirculation in the diabetic foot[J]. Current Pharmaceutical Design, 2018, 24(12): 1304-1316.

[32] HE D W, NGUYEN H, HAYES-GILL B, et al. Laser Doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing[J]. Sensors, 2013, 13(9): 12632-12647.

[33] WANG G. Research on key technologies of laser Doppler blood flow velocity system[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 91-105(in Chinese).

[34] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[35] FERCHER A F, HITZENBERGER C K, DREXLER W, et al. In vivo optical coherence tomography[J]. American Journal of Ophthalmology, 1993, 116(1):113-114.

[36] YU L Zh, SHEN X. Research progress in diagnosis of eye diseases using optical coherence tomography angiography[J]. Journal of Shanghai Jiaotong University(Medical Science Edition), 2018, 38(7): 829-834(in Chinese).

[37] PUJARI A, SALUJA G, CHAWLA R, et al. Optical coherence tomography angiography in amblyopia: A critical update on current understandings and future perspectives[J]. European Journal of Ophthalmology, 2021, 32(3): 1324-1332.

[38] KAMALIPOUR A, MOGHIMI S, HOU H, et al. OCT angiography artifacts in glaucoma[J]. Ophthalmology, 2021, 128(10): 1426-1437.

[39] HU X X, WANG X L, DAI Y, et al. Effect of nimodipine on macular and peripapillary capillary vessel density in patients with normal-tension glaucoma using optical coherence tomography angiography[J]. Current Eye Research, 2021, 46(12): 1-6.

[40] FENG Y. Analysis and study of the macular of retina inanisometropic amblyopia based on OCTA[D].Nanchang: Nanchang University, 2021:22-31(in Chinese).

[41] SONMEZ H K, POLAT O A, ERKAN G. Inner retinal layer ischemia and vision loss after COVID-19 infection: A case report [J]. Photodiagnosis and Photodynamic Therapy, 2021, 35: 102406.

[42] BILBAOMALAV V, GONZLEZ Z J, MANUEL S D V, et al. Persistent retinal microvascular impairment in COVID-19 bilateral pneumonia at 6-months follow-up assessed by optical coherence tomography angiography[J]. Biomedicines, 2021, 9(5): 502.

[43] GUEMES-VILLAHOZ N, BURGOS-BLASCO B, VIDAL-VILLEGAS B, et al. Reduced macular vessel density in COVID-19 patients with and without associated thrombotic events using optical coherence tomography angiography[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 2021, 259(8): 1-7.

[44] FANG L, CHEN Zh, ZHANG X R. Advantages of optical coherence tomography angiography in early diagnosis of glaucoma[J]. China Medical Devices, 2021, 36(11): 150-154(in Chinese).

[45] MIURA M, MURAMATSU D, HONG Y J, et al. Noninvasive vascular imaging of ruptured retinal arterial macroaneurysms by Doppler optical coherence tomography[J]. BMC Ophthalmology, 2015, 15(1):1-5.

[46] LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: Principles and recent developments[J]. Chinese Optics, 2020, 13(5): 919-935(in Chinese).

[47] WANG L W, CUI L, ZOU J X, et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. International Eye Science, 2019, 19(8): 1361-1364(in Chinese).

[48] ZHONG Y, CHE H X. Detective values of optical coherence tomography angiography for primary glaucoma[J]. Recent Advances in Ophthalmology, 2018, 38(4): 352-356(in Chinese).

[49] SAKAI J, MINAMIDE K J, NAKAMURA S, et al. Retinal arteriole pulse waveform analysis using a fully-automated Doppler optical coherence tomography flowmeter:A pilot study[J]. Translational Vision Science & Technology, 2019, 8(3):13.

[50] KISELEVA E, RYABKOV M, BALEEV M, et al. Prospects of intraoperative multimodal OCT application in patients with acute mesenteric ischemia[J]. Diagnostics, 2021, 11(4): 705.

[51] WEI Y Zh, YUAN Q, LAN G P, et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400002(in Chinese).

[52] ZHU M Q, ZHANG M Y, XU K, et al. The methods and research progress of photoacoustic blood flow velocity measurement[J]. Optical Instruments, 2021, 43(1):88-94(in Chinese).

[53] GIFANI M, EDDINS D J, KOSUGE H, et al. Ultraselective carbon nanotubes for photoacoustic imaging of inflamed atherosclerotic plaques[J]. Advanced Functional Materials, 2021, 31(37):2101005.

[54] AMIDI E, YANG G, UDDIN K M S, et al. Role of blood oxygenation saturation in ovarian cancer diagnosis using multi-spectral photoacoustic tomography[J]. Journal of Biophotonics, 2020, 14(4): e202000368.

[55] YIN R Y, TONG Y, ZHAO Y Q, et al. Optical Doppler technologies for micro-circulation measurement and their recent progress[J]. Optical Technique, 2013, 39(2): 112-123(in Chinese).

[56] BELL A G. Upon the production and reproduction of sound by light[J]. American Journal of Society, 1880, S3-20(118): 305-324.

[57] SHEINFELD A, GILEAD S, EYAL A. Photoacoustic Doppler measurement of flow using tone burst excitation[J]. Optics Express, 2010, 18(5):4212-4221.

[58] HUANG Sh Sh, NIE L M. Recent progresses of photoacoustic imaging in biomedical applications[J]. Journal of Xiamen University(Natural Science Edition), 2019, 58(5): 625-636(in Chinese).

[59] VALLURU K S, WILLMANN J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4): 267-280.

[60] MIAO Q Q, LYU Y, DING D, et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 2016, 28(19): 3662-3670.

[61] DENG H, SHANG W, LU G, et al. Targeted and multifunctional technology for identification between hepatocellular carcinoma and liver cirrhosis[J]. ACS Applied Materials & Interfaces, 2019, 11(16):14526-14537.

[62] ZHANG J Y, XIE W M, ZENG Zh P, et al. Recent progress in photoacoustic imaging technology[J]. Chinese Optics, 2011, 4(2):111-117(in Chinese).

[63] QIAO W, CHEN Ch J. Noncontact photoacoustic Doppler flowmetry based on optical coherent detection[J]. Acta Laser Biology Sinica, 2018, 27(4): 338-344(in Chinese).

[64] YANG Ch. Photoacoustic lmaging with enhanced sensitivity, resolution and speed[D]. Hefei: University of Science and Technology of China, 2021:62-88(in Chinese).

[65] GONG F, CHENG L, LIU Zh. Application of nanoprobes in photoacoustic cancer imaging[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180004.

[66] LIN R Q, LENG J, CHEN J Q, et al. Photoacoustic lmaging technology for clinical applications[J]. China Medical Devices, 2018, 33(1):1-5(in Chinese).

[67] VENKATESH R, JAYADEV C, SRIDHARAN A, et al. Internal limiting membrane detachment in acute central retinal artery occlusion: A novel prognostic sign seen on OCT[J]. International Journal of Retina and Vitreous, 2021, 7(1):51.

[68] ZHANG H F, PULIAFITO C A, JIAO Sh L. Photoacoustic ophthalmoscopy for in vivo retinal imaging: Current status and prospects[J]. Ophthalmic Surgery, Lasers & Imaging, 2011, 42(s0): 106-115.

[69] SONG W. Investigation of photoacousticimaging on optical absorption property of retina[D]. Harbin: Harbin Institute of Technology, 2014: 73-102(in Chinese).

[70] QI W Zh. Optical-resolution photoacoustic microscopy for early-stage oral cancer detection[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 53-62(in Chinese).

[71] DENIZ E, MISEMILY K, LANE M, et al. CRISPR/Cas9 F0 screening of congenital heart disease genes in xenopus tropicalis.[J]. Methods in Molecular Biology, 2018, 1865: 163-174.

[72] WANG L, JIN B Zh, ZHANG X Zh. Effects of the monitoring of cerebral blood flow in the preparation of cerebral ischemia model in rats[J].Chinese Journal of Cerebrovascular Diseases, 2017, 14(5):254-260(in Chinese).

[73] ZHANG Zh, TANG W W, LI Y F, et al. Bioinspired conjugated tri-porphyrin-based intracellular ph-sensitive metallo-supramolecular nanoparticles for near-infrared photoacoustic imaging-guided chemo- and photothermal combined therapy[J]. ACS Biomaterials Science & Engineering, 2021, 7(9): 4503-4508.

[74] WANG Y M, BOWER B A, IZATT J A, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography[J]. Journal of Biomedical Optics, 2007, 12(4): 041215.

[75] PAN L H, ZHANG X Y, LI Zh L, et al. Blood flow measurementwith photoacoustic microscopy and optical coherence tomography[J]. Chinese Journal of Lasers, 2018, 45(6): 0607004(in Chinese).

[76] SABIONI L, de LORENZO A, LAMAS C, et al. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis[J]. Microvascular Research, 2021, 134: 104119.

叶枫, 侯昌伦. 光学多普勒无创血流测量技术的发展与现状[J]. 激光技术, 2023, 47(2): 205. YE Feng, HOU Changlun. Development and status of optical Doppler noninvasive blood flow measurement technology[J]. Laser Technology, 2023, 47(2): 205.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!