硅酸盐学报, 2023, 51 (3): 812, 网络出版: 2023-04-10  

挠曲电效应及其应用研究进展

Recent Development on Flexoelectric Effect and Its Application
作者单位
1 华中科技大学材料科学与工程学院,材料成形与模具技术国家重点实验室 武汉 430074
2 广东华中科技大学工业技术研究院 广东 东莞 523808
3 华中科技大学光学与电子信息学院 武汉 430074
摘要
挠曲电效应是一种应变梯度与电极化(正挠曲电效应)或电场强度梯度与应变(逆挠曲电效应)之间的力电耦合效应。与压电效应不同,挠曲电效应不受材料对称性、Curie温度所限制,且随着材料尺寸减小而不断增强,因而具有广阔的研究与应用前景。本文主要总结了挠曲电效应的发展历史、挠曲电系数测量、挠曲电效应增强机制以及当前研究进展,重点介绍了挠曲电效应在传感器、致动器、机械存储器、挠曲电压电复合材料、俘能器以及新型电子器件等领域应用的最新研究进展,最后对挠曲电效应的发展前景进行了展望。
Abstract
The flexoelectric effect is a mechanical-electric coupling effect between strain gradient and electric polarization (i.e., positive flexoelectric effect) or electric field strength gradient and mechanical strain (i.e., converse flexoelectric effect). Unlike the piezoelectric effect, the flexoelectric effect, which is not limited by material symmetry and the Curie temperature, increases with decreasing the material size, thus attracting much attention and having a promising application. This review introduced the history of flexoelectric effect, measurement of flexoelectric coefficient, and mechanism to enhance flexoelectric effect. Recent studies on its application in the realm of sensors, actuators, mechanical memories, flexoelectric piezoelectric composites, energy harvesters, and electronic devices were highlighted. In addition, the further development of flexoelectric effect was also prospected.
参考文献

[1] ZUBKO P, CATALAN G, TAGANTSEV A K. Flexoelectric Effect in Solids[J]. Annu Rev Mater Res, 2013, 43: 387-421.

[2] YUDIN P V, TAGANTSEV A K. Fundamentals of flexoelectricity in solids[J]. Nanotechnology, 2013, 24(43): 432001.

[3] NGUYEN T D, MAO S, YEH Y W, et al. Nanoscale flexoelectricity[J]. Adv Mater, 2013, 25(7): 946-974.

[4] PRAMANICK A, DAMJANOVIC D, NINO J C, et al. Subcoercive cyclic electrical loading of lead zirconate titanate ceramics I: nonlinearities and losses in the converse piezoelectric effect[J]. J Am Ceram Soc, 2009, 92(10): 2291-2299.

[5] RDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J Am Ceram Soc, 2009, 92(6): 1153-1177.

[6] 梁旭, 尚红星, 邓谦, 等. 固体电介质中的挠曲电效应[J]. 固体力学学报, 2021, 42(1): 1-32.

[7] SHU L, LI F, HUANG W, et al. Relationship between direct and converse flexoelectric coefficients[J]. J Appl Phys, 2014, 116(14): 144105.

[8] MA W, CROSS L E. Observation of the flexoelectric effect in relaxor Pb (Mg1/3Nb2/3) O3 ceramics[J]. Appl Phys Lett, 2001, 78(19): 2920-2921.

[9] CROSS L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients[J]. J Mater Sci, 2006, 41(1): 53-63.

[10] 周万丰. 铁电陶瓷的挠曲电效应产生机理和应用研究[D]. 合肥:中国科学技术大学, 2018.

[11] HENMI N, TOHYAMA M. Measurement of Flexoelectric Effect in Lead Zirconate Titanate Ceramics[J]. J Adv Mech Des Syst, 2011, 5(1): 1-6.

[12] ZUBKO P, CATALAN G, BUCKLEY A, et al. Strain-gradient-induced polarization in SrTiO3 single crystals[J]. Phys Rev Lett, 2007, 99(16): 167601.

[13] ZHOU W, CHEN P, PAN Q, et al. Lead-free metamaterials with enormous apparent piezoelectric response[J]. Adv Mater, 2015, 27(41): 6349-6355.

[14] ZHOU W, ZHANG H, CHEN P, et al. Analysis of high temperature reduction process of Na0.5Bi0.5TiO3-based ceramics[J]. J Eur Ceram Soc, 2018, 38(4): 1421-1426.

[15] ZHANG X, LIU J, CHU M, et al. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers[J]. Appl Phys Lett, 2016, 109(7): 072903.

[16] MASHKEVICH V S, TOLPYGO K B. Electrical, optical and elastic properties of diamond type crystals[J]. Sov Phys JETP, 1957, 5(3): 435-439.

[17] BLOTEKJAER K, QUATE C F. The coupled modes of acoustic waves and drifting carriers in piezoelectric crystals[J]. Proc IEEE Inst Electr Electron Eng, 1964, 52(4): 360-377.

[18] MINDLIN R D. Polarization gradient in elastic dielectrics[J]. Int J Solids Struct, 1968, 4(6): 637-642.

[19] ASKAR A, LEE P C Y, CAKMAK A S. Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient[J]. Phys Rev B, 1970, 1(8): 3525-3537.

[20] INDENBOM V L, LOGINOV E B, OSIPOV M A. Flexoelectric effect and crystal-structure[J]. Kristallografiya, 1981, 26(6): 1157-1162.

[21] TAGANTSEV A K. Piezoelectricity and flexoelectricity in crystalline dielectrics[J]. Phys Rev B, 1986, 34(8): 5883-5889.

[22] TAGANTSEV A K. Theory of flexoelectric effect in crystals[J]. J Exp Theor Phys+ 1985, 88(6): 2108-2122.

[23] MA W, CROSS L E. Flexoelectric effect in ceramic lead zirconate titanate[J]. Appl Phys Lett, 2005, 86(7): 072905.

[24] MA W, CROSS L E. Flexoelectricity of barium titanate[J]. Appl Phys Lett, 2006, 88(23): 232902.

[25] FU J Y, ZHU W, LI N, et al. Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition[J]. J Appl Phys, 2006, 100(2): 024112.

[26] SHU L, WAN M, WANG Z, et al. Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics[J]. Appl Phys Lett, 2017, 110(19): 192903.

[27] MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Phys Rev B, 2008, 77(12): 125424.

[28] MARANGANTI R, SHARMA P. Atomistic determination of flexoelectric properties of crystalline dielectrics[J]. Phys Rev B, 2009, 80(5): 054109.

[29] SHEN S, HU S. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. J Mech Phys Solids, 2010, 58(5): 665-677.

[30] PONOMAREVA I, TAGANTSEV A K, BELLAICHE L. Finite- temperature flexoelectricity in ferroelectric thin films from first principles[J]. Phys Rev B, 2012, 85(10): 104101.

[31] ABOU-DAKKA M, HERRERA-VALENCIA E E, REY A D. Linear oscillatory dynamics of flexoelectric membranes embedded in viscoelastic media with applications to outer hair cells[J]. J Non-Newton Fluid, 2012, 185: 1-17.

[32] KANG H, HOU Z, QIN Q H. Experimental study of time response of bending deformation of bone cantilevers in an electric field[J]. J Mech Behav Biomed, 2018, 77: 192-198.

[33] HONG J, VANDERBILT D. First-principles theory and calculation of flexoelectricity[J]. Phys Rev B, 2013, 88(17): 174107.

[34] NARVAEZ J, VASQUEZ-SANCHO F, CATALAN G. Enhanced flexoelectric-like response in oxide semiconductors[J]. Nature, 2016, 538(7624): 219-221.

[35] YURKOV A S, TAGANTSEV A K. Strong surface effect on direct bulk flexoelectric response in solids[J]. Appl Phys Lett, 2016, 108(2): 022904.

[36] GHASEMI H, PARK H S, RABCZUK T. A multi-material level set-based topology optimization of flexoelectric composites[J]. Comput Methods Appl Mech Eng, 2018, 332: 47-62.

[37] LI Q, NELSON C T, HSU S L, et al. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling[J]. Nat Commun, 2017, 8(1): 1-8.

[38] MAO Y, AI S, XIANG X, et al. Theory for dielectrics considering the direct and converse flexoelectric effects and its finite element implementation[J]. Appl Math Model, 2016, 40(15-16): 7115-7137.

[39] SHU L, WANG Z, LIANG R, et al. Intrinsic flexoelectricity of van der Waals epitaxial thin films[J]. Phys Rev B, 2022, 106(2): 024108.

[40] 褚亮亮. 功能梯度介电材料中的尺寸效应和挠曲电效应及其机理分析[D]. 北京:北京交通大学, 2020.

[41] ZHANG S, LIANG X, XU M, et al. Shear flexoelectric response along 3121 direction in polyvinylidene fluoride[J]. Appl Phys Lett, 2015, 107(14): 142902.

[42] ZHANG S, LIU K, XU M, et al. Investigation of the 2312 flexoelectric coefficient component of polyvinylidene fluoride: Deduction, simulation, and mensuration[J]. Sci Rep 2017, 7(1): 1-9.

[43] ZHOU H, PEI Y, HONG J, et al. Analytical method to determine flexoelectric coupling coefficient at nanoscale[J]. Appl Phys Lett, 2016, 108(10): 101908.

[44] HU T, DENG Q, LIANG X, et al. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment[J]. J Appl Phys, 2017, 122(5): 055106.

[45] CHOI S B, KIM G W. Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters[J]. J Phys D Appl Phys, 2017, 50(7): 075502.

[46] 喻彦卓. 铁电陶瓷的挠曲电老化行为及其机理研究[D]. 南昌: 南昌大学, 2020.

[47] SHU L, HUANG W, RYUNG Kwon S, et al. Converse flexoelectric coefficient f 1212 in bulk Ba0.67Sr0.33TiO3[J]. Appl Phys Lett, 2014, 104(23): 232902.

[48] SHU L, LIANG R, RAO Z, et al. Flexoelectric materials and their related applications: A focused review[J]. J Adv Ceram, 2019, 8(2): 153-173.

[49] MAO S, PUROHIT P K. Defects in flexoelectric solids[J]. J Mech Phys Solids, 2015, 84: 95-115.

[50] HASHEMIZADEH S, BIANCOLI A, DAMJANOVIC D. Symmetry breaking in hexagonal and cubic polymorphs of BaTiO3[J]. J Appl Phys, 2016, 119(9): 094105.

[51] ZHANG X, PAN Q, TIAN D, et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics[J]. Phys Rev Lett, 2018, 121(5): 057602.

[52] JIANG X, HUANG W, ZHANG S. Flexoelectric nano-generator: Materials, structures and devices[J]. Nano Energy, 2013, 2(6): 1079-1092.

[53] YAN X, HUANG W, KWON S R, et al. A sensor for the direct measurement of curvature based on flexoelectricity[J]. Smart Mater Struct, 2013, 22(8): 085016.

[54] KWON S R, HUANG W B, ZHANG S J, et al. Flexoelectric sensing using a multilayered barium strontium titanate structure[J]. Smart Mater Struct, 2013, 22(11): 115017.

[55] KWON S R, HUANG W B, ZHANG S J, et al. Study on a flexoelectric microphone using barium strontium titanate[J]. J Micromech Microeng, 2016, 26(4): 045001.

[56] ZHANG M, YAN D, WANG J, et al. Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification[J]. J Mech Phys Solids, 2021, 151: 104396.

[57] REN J, LIU Y, SHI X, et al. Flexoelectricity Driven Fano Resonance in Slotted Carbon Nanotubes for Decoupled Multifunctional Sensing[J]. Research, 2021, 2021.

[58] BHASKAR U K, BANERJEE N, ABDOLLAHI A, et al. A flexoelectric microelectromechanical system on silicon[J]. Nat Nanotechnol, 2016, 11(3): 263-266.

[59] ZHANG S, LIU K, XU M, et al. A curved resonant flexoelectric actuator[J]. Appl Phys Lett, 2017, 111(8): 082904.

[60] ZHANG S, SHAO S, YANG X, et al. An enhanced flexoelectric dielectric elastomer actuator with stretchable electret[J]. Smart Mater Struct, 2021, 30(12): 125004.

[61] LEE D, YOON A, JANG S Y, et al. Giant flexoelectric effect in ferroelectric epitaxial thin films[J]. Phys Rev Lett, 2011, 107(5): 057602.

[62] LU H, BARK C W, ESQUE DE LOS OJOS D, et al. Mechanical writing of ferroelectric polarization[J]. Science, 2012, 336(6077): 59-61.

[63] PARK S M, WANG B, DAS S, et al. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field[J]. Nat Nanotechnol, 2018, 13(5): 366-370.

[64] GUAN Z, LI Y K, ZHAO Y F, et al. Mechanical polarization switching in Hf0.5Zr0.5O2 thin film[J]. Nano Letters, 2022.

[65] WANG K F, WANG B L. Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect[J]. Energy, 2018, 149: 597-606.

[66] HAN J K, JEON D H, CHO S Y, et al. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects[J]. Sci Rep, 2016, 6(1): 1-8.

[67] YOON C, IPPILI S, JELLA V, et al. Synergistic contribution of flexoelectricity and piezoelectricity towards a stretchable robust nanogenerator for wearable electronics[J]. Nano Energy, 2022, 91: 106691.

[68] CHEN Y, YAN Z. Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity[J]. Int J Mech Sci, 2020, 173: 105473.

[69] CHEN Y, YAN Z. Nonlinear analysis of unimorph and bimorph piezoelectric energy harvesters with flexoelectricity[J]. Compos Struct, 2021, 259: 113454.

[70] SUN R, LIU D, YAN Z. A finite element approach for flexoelectric nonuniform nanobeam energy harvesters[J]. Mech Adv Mater Struc, 2022: 1-12.

[71] JAVVAJI B, ZHUANG X, RABCZUK T, et al. Machine-learning- based exploration of bending flexoelectricity in novel 2D van der waals bilayers[J]. Adv Energy Mater, 2022: 2201370.

[72] ZHU W, FU J Y, LI N, et al. Piezoelectric composite based on the enhanced flexoelectric effects[J]. Appl Phys Lett, 2006, 89(19): 192904.

[73] CHU B, ZHU W, LI N, et al. Flexure mode flexoelectric piezoelectric composites[J]. J Appl Phys, 2009, 106(10): 104109.

[74] 侯宇. 铁电陶瓷挠曲电效应的研究[D]. 合肥: 中国科学技术大学, 2020.

[75] YANG M M, KIM D J, ALEXE M. Flexo-photovoltaic effect[J]. Science, 2018, 360(6391): 904-907.

[76] SHU L, KE S, FEI L, et al. Photoflexoelectric effect in halide perovskites[J]. Nat Mater, 2020, 19(6): 605-609.

[77] WANG L, LIU S, FENG X, et al. Flexoelectronics of centrosymmetric semiconductors[J]. Nat Nanotechnol, 2020, 15(8): 661-667.

[78] WU M, JIANG Z, LOU X, et al. Flexoelectric thin-film photodetectors[J]. Nano Lett, 2021, 21(7): 2946-2952.

[79] SUN L, JAVVAJI B, ZHANG C, et al. Effect of flexoelectricity on a bilayer molybdenum disulfide Schottky contact[J]. Nano Energy, 2022: 107701.

[80] HANA P. Study of flexoelectric phenomenon from direct and from inverse flexoelectric behavior of PMNT ceramic[J]. Ferroelectrics, 2007, 351(1): 196-203.

[81] HUANG W, KIM K, ZHANG S, et al. Scaling effect of flexoelectric (Ba, Sr)TiO3 microcantilevers[J]. Phys Status Solidi-R, 2011, 5(9): 350-352.

[82] MA W, CROSS L E. Flexoelectric polarization of barium strontium titanate in the paraelectric state[J]. Appl Phys Lett, 2002, 81(18): 3440-3442.

[83] 李舜玲. 钛酸铋钠基无铅压电陶瓷的掺杂及挠曲电增强改性[D]. 镇江: 江苏大学, 2020.

张海波, 王传民, 马伟刚, 高华昀, 周鑫翊, 刘凯, 吴天琼, 姜胜林, 刘洋, 闫春泽, 郭新, 谭划. 挠曲电效应及其应用研究进展[J]. 硅酸盐学报, 2023, 51(3): 812. ZHANG Haibo, WANG Chuanmin, MA Weigang, GAO Huayun, ZHOU Xinyi, LIU Kai, WU Tianqiong, JIANG Shenglin, LIUYang, YAN Chunze, GUO Xin, TAN Hua. Recent Development on Flexoelectric Effect and Its Application[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 812.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!