光通信技术, 2023, 47 (5): 0071, 网络出版: 2024-02-02  

基于LABS技术和FPGA的固态激光雷达测距系统

Solid-state lidar ranging system based on LABS technology and FPGA
作者单位
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
摘要
针对传统固态激光雷达中光束快速扫描控制响应速度和电压控制精度较低的问题,提出了一种基于透镜辅助光束扫描(LABS)技术和现场可编程逻辑门阵列(FPGA)的固态激光雷达测距系统。该系统采用收发一体的结构,系统中的LABS器件由1×16光开关芯片、4×4光纤阵列和透镜组成。根据LABS方案每一级只有一个光开关处于工作状态的特点,通过选择不同的发射器,将光束照亮到透镜的不同位置来实现光束的转向。光束扫描采用FPGA结合外部选通电路进行控制的方式,通过输出电压控制4级马赫-曾德尔干涉仪(MZI)型光开关工作,实现光束的快速切换。实验结果表明,该系统光束转向角度步长为0.35°,最大测距范围可达200 m,9.2 m内的测距误差约为1 cm。
Abstract
Aiming at the problems of low response speed and voltage control accuracy in traditional solid-state lidar, a solid-state lidar ranging system based on lens-assisted beam scanning(LABS) technology and field programmable logic array(FPGA) is proposed. The system adopts transceiver integrated structure. The LABS device in the system is composed of 1×16 optical switch chip, 4×4 optical fiber array and lens. According to the characteristics of the LABS scheme, only one optical switch is in working state at each level, and the beam is illuminated to different positions of the lens by selecting different emitters. The beam scanning is controlled by FPGA combined with an external elector, and the 4-stage Mach-Zehnder interferometer(MZI) optical switch is controlled by the output voltage to realize the fast switching of the beam. The experimental results show that the beam steering Angle step of the system is 0.35°, the maximum ranging range can reach 200 m, and the ranging error within 9.2 m is about 1 cm.
参考文献

[1] STEFAN P, FABIAN S, JOERG S, et al. Photonically synchronized large aperture radar for autonomous driving[J]. Optics Express, 2019, 27(2): 1199-1207.

[2] MICHAEL A, WARREN B, GEOFFREY G, et al. Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists[J]. BioScience, 2020, 52(1): 19-30.

[3] ALEXANDER K, JOSEP S, MARTIN G, et al. Line of sight calibration for the laser ranging interferometer on-board the GRACE follow-on mission: on-ground experimental validation[J]. Optics Express, 2018, 26(20): 25892-25908.

[4] OLIVER M, ALEXANDER S, MICHAEL C, et al. Architecture and performance analysis of an optical metrology terminal for satellite-to-satellite laser ranging[J]. Applied Optics, 2020, 59(3): 653-661.

[5] LUO G, WANG P, MA J, et al. Demonstration of 128-channel optical phased array with large scanning range[J]. IEEE Photonics Journal, 2021, PP(99): 1-1.

[6] KIM S H, YOU J B, HA Y G, et al. Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array[J]. Optics Letters, 2019, 44(2): 411-414.

[7] DOSTART N, ZHANG B, KHILO A, et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering[J]. Optica, 2020, 7: 726-733.

[8] NICLASS C, ITO K, SOGA M, et al. Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor[J]. Optics Express, 2012, 20(11): 11863-11881.

[9] SMITH B, HELLMAN B, GIN A, et al. Single chip lidar with discrete beam steering by digital micromirror device[J]. Optics Express, 2017, 25(13): 14732-14745.

[10] WILLEKENS O, JIA X, VERVAEKE M, et al. Reflective liquid crystal hybrid beam-steerer[J]. Optics Express, 2016, 24(19): 21541-21550.

[11] CHANG Y C, SHIN M C, PHARE C T, et al. Metalens-enabled low-power solid-state 2D beam steering[C]//Conference on Lasers and Electro-Optics: Science and Innovations, May 5-10, 2019, San Jose, USA. Washington: Optical Society of America, 2019: SF3N.5-1-SF3N.5-2.

[12] KIM S, SLOAN J, LOPEZ J, et al. Luneburg lens for wide-angle chip-scale optical beam steering[C]//Conference on Lasers and Electro-Optics: Science and Innovations, May 5–10, 2019, San Jose, USA. Washington: Optical Society of America, 2019: SF3N.7-1-SF3N.7-2.

[13] ITO H, Y KUSUNOK I, MAEDA J, et al. Wide beam steering by slow-light waveguide gratings and a prism lens[J]. Optica, 2020, 7: 47-52.

[14] DU Z, HU C, CAO G, et al. Integrated wavelength beam emitter on Silicon for two-dimensional optical scanning[J]. IEEE Photonics Journal, 2019, 11(6): 1-10.

[15] LI C, CAO X Y, WU K, et al. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application [J]. Optics Express, 2019, 27 (23): 32970-32983.

[16] LI C, CAO X Y, WU K, et al. Blind zone-suppressed hybrid beam steering for solid-state Lidar[J]. Photonics Research, 2021, 9: 1871-1880.

[17] ROGERS C, PIGGOTT A Y, THOMSON D J, et al. A universal 3D imaging sensor on a silicon photonics platform[J]. Nature, 2021, 590: 256-261.

[18] SUYAMA S, ITO H, KURAHASHI R, et al. Doppler velocimeter and vibrometer FMCW lidar with Si photonic crystal beam scanner[J]. Optics Express, 2021, 29(19): 30727-30734.

[19] LI C, WU K, CAO X, et al. Hybrid 2D beam steering for solid-state TOF lidar[C]//Asia Communications and Photonics Conference 2021, October 24-27, Shanghai, China. Shanghai: IEEE, 2021 T3D.4-1-T3D.4-3.

[20] LI C, WU K, CAO X Y, et al. Monolithic transceiver for lens-assisted beam-steering lidar[J]. Optics Letters, 2021, 46(21): 5587-5590.

[21] LI C, CAO X Y, LI X W, et al. FMCW lidar system based on cylindrical lens-assisted integrated beam steering[C]//Conference on Lasers and Electro-Optics: Applications and Technology, May 9-14, 2021, San Jose, USA. Washington: Optical Society of America, 2021: JW1A.55.

[22] 邱高峰,吴侃,曹先益,等. 基于FPGA电控的二维快速光束扫描雷达系统[J]. 光学学报,2021,41(11):19-26.

[23] CAO X Y, QIU G F, WU K, et al. A lidar system based on lens assisted integrated beam steering [J]. Optics Letters, 2020, 45(2): 5816-5819.

周莎莎, 吴侃, 曹先益, 隆嘉轩, 陈建平. 基于LABS技术和FPGA的固态激光雷达测距系统[J]. 光通信技术, 2023, 47(5): 0071. ZHOU Shasha, WU Kan, CAO Xianyi, LONG Jiaxuan, CHEN Jianping. Solid-state lidar ranging system based on LABS technology and FPGA[J]. Optical Communication Technology, 2023, 47(5): 0071.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!