光学学报, 2024, 44 (5): 0522002, 网络出版: 2024-03-15  

具有可变真空结构的物镜优化设计及性能分析

Optimized Design and Performance Analysis of Objective Lenses with Variable Vacuum Structures
史丽娜 1,2王鹏飞 1,*刘俊标 1,2,**王岩 1殷伯华 1,2韩立 1,2
作者单位
1 中国科学院电工研究所,北京 100190
2 中国科学院大学,北京 100049
摘要
环境扫描电子显微镜(ESEM)能够在低真空环境模式下对含水、含油以及生物等样品进行高分辨率观测。由于电子束通道与样品室间存在着极大的真空压差,采用真空差分结构会导致出现物镜的工作距离增加、偏转范围缩小、电子束和气体碰撞概率增加等问题,最终影响成像分辨率和效率。针对这些问题,本文从电子光学理论出发,综合考虑了ESEM中物镜结构和真空差分结构,将两者结合在一起进行优化设计,提出了一种具有可变真空结构的物镜设计方法,并搭建了实验平台,开展了物镜磁场测试、真空压差测试和分辨率测试。测试结果表明,在目前实验条件和133 Pa的低真空环境模式下,工作距离为15 mm时,20 μm×20 μm的扫描场对应的成像分辨率优于50 nm。
Abstract
Objective

Environmental scanning electron microscopes (ESEMs) are widely employed for high-resolution observation of water containing, oil containing, and biological samples in low vacuum environments. However, at present, the development of ESEMs in China is almost blank, and most of them need to rely on imports. Therefore, the research on ESEMs can help improve China's independent development capability in this field, and provide a theoretical and experimental basis for the development of ESEMs in the future. Compared with conventional electron microscopy, the sample chamber of ESEMs should be in a low vacuum or ambient state. The vacuum value is generally on the order of 100 Pa, while that of the electron beam channel and the electron gun needs to be less than 1×10-3 Pa and 1×10-7 Pa respectively. The pressure difference between the electron beam channel and the sample chamber is much larger than that between the electron gun and the electron beam channel. The conventional method is to add a throttle tube between the electron beam channel and the sample chamber. Meanwhile, since the large pressure difference remains much greater than that between the electron gun and the electron beam channel, the conventional method is to add a throttle tube between the electron beam channel and the sample chamber, but the large pressure difference will result in a long throttle tube with a small aperture. This will bring practical problems in imaging, such as the longer throttle tube leading to an increase in the working distance of the objective lens. As a result, it increases the spherical aberration, reduces the imaging resolution, and causes a smaller deflection range to a certain extent. Additionally, the long throttle tube will lead to the presence of residual gas inside the tube, the electron beam will drift in a section of the gas space where there is low gas pressure, and the probability of collision between the electron beam and the gas is high, which will have a greater effect on the resolution at low accelerating voltages. Therefore, the comprehensive design of ESEMs, which plays a key role in the system resolution of the objective lens and vacuum differential structure, is the study focus and difficulty.

Methods

Starting from the theory of electron optics, we consider the structure of the objective lens and the vacuum differential structure in the ESEM comprehensively. Firstly, two throttle tubes are designed between the sample chamber and the electron beam channel (near the lower pole shoe of the objective lens), and a transition zone is added inside the objective lens to form a three-level vacuum differential structure of the sample chamber, the transition zone and the electron beam channel. The vacuum in the transition zone should be two orders of magnitude higher than that in the sample chamber, and that in the electron beam channel should be two to three orders of magnitude higher than that in the transition zone. Considering the processing cost and difficulty of the elongated throttle tube, we adopt the combination of multiple diaphragms, which can more conveniently change the vacuum level by adjusting the aperture and number of diaphragm sheets in the diaphragm groove to achieve the required differential pressure difference. Then, the optimized design of a high-resolution ESEM objective lens and deflector is carried out based on a double-throttle vacuum resistance structure. Finally, an experimental platform is set up, and the objective magnetic field test, vacuum differential pressure test, and resolution test are carried out for validation.

Results and Discussions

Considering the objective structure and vacuum differential structure in the ESEM, a double throttle tube vacuum resistance structure as shown in Fig. 2 is designed to form a three-stage differential test structure (Fig. 10). This design can reduce the length of the throttle tube as a whole, which lowers the requirements for the aperture and length of the throttle tube to a certain extent, and thus reduces the influence on the working distance and the deflection field. Meanwhile, it can also reduce the gas residual situation in the narrow throttle tube, and reduce the influence of the electron beam drift in the narrow gas space in the throttle tube. The results of the vacuum differential pressure test show that the vacuum in the transition vacuum zone is two orders of magnitude higher than that in the sample chamber, and the vacuum in the electron beam channel is two to three orders of magnitude higher than that in the transition vacuum zone, which can meet the design requirements. The resolution test results show that in the current experimental conditions and the low vacuum environment mode of 133 Pa, the imaging resolution corresponding to the 20 μm×20 μm scanning field is better than 50 nm, and that corresponding to the 80 μm×80 μm scanning field is better than 100 nm when the working distance is 15 mm (Fig. 13).

Conclusions

Starting from the electron optics theory, we consider the objective lens structure and vacuum differential structure in the ESEM comprehensively, and the two are combined for the optimal design to provide a design method for the objective lens with variable vacuum structures. Systematic analyses, calculations, and simulations are carried out. Based on the theoretical analysis and simulation results, a magnetic field test platform and an ESEM experimental test platform are built for experiments, and the results show that in the current experimental conditions and low vacuum environment mode, the imaging resolution of 20 μm×20 μm scanning field corresponds to a resolution of better than 50 nm when the working distance is 15 mm. The overall closed-loop design and test of the objective lens with variable vacuum structures provide a theoretical and experimental basis for the development of ESEM.

1 引言

环境扫描电子显微镜(ESEM)是扫描电子显微镜(SEM)的一个重要应用分支。ESEM除了具备传统SEM的功能外,还可在低真空模式和环境模式下(133~2660 Pa)直接观察生物样品、含水样品以及含油样品等。从理论上讲,ESEM可选择高真空、低真空(真空度介于高真空与环境之间)和环境三种不同的工作模式对样品进行观测1-2。在国内,ESEM的研制工作几乎空白,但利用ESEM观测含水样品、含油样品以及生物样品等已有了广泛的应用场景,例如,李成星等3利用ESEM观测伪俏榕小蜂雌雄成虫触角感器的形态与分布;巩雪男4利用ESEM对石油地质的黏土矿物和油气存储层进行了分析研究;胡明玉等5利用ESEM对新型硅藻土调湿材料的吸附/解吸理论、改性机制调节以及调湿机制进行了研究。因此,开展ESEM的研究有助于提升我国在这方面的自主研制能力。

目前电镜类设备常采用热场发射电子枪,真空值一般小于1×10-7 Pa。但与常规电镜相比,ESEM的样品室需要处于低真空或环境状态,真空值一般为100 Pa量级。而电子枪腔室以及电子束通道必须始终稳定处于高真空状态,两者真空压差最大可达9个数量级。差分真空是解决电子束通道与样品室两者之间真空矛盾最常用的方法6-10。在ESEM的低真空和环境模式设计时,通常会使用节流管作为真空气阻结构起到真空差分作用,且考虑到模式切换等因素,一般会将电子束通道与样品室之间的节流管安装于物镜的下极靴处7。但是此处节流管的存在会对电子光学的设计带来一些问题,如节流管太长导致物镜工作距离增加且一定程度上导致偏转范围缩小;长节流管还会导致管内存在残存气体,电子束在一段存在低气压的气体空间漂移运动,电子束和气体碰撞概率增加,会对低加速电压下的分辨率影响较大等。物镜是ESEM中的核心聚焦部件,也是实现高分辨率成像的关键部件。本文就节流管带来的问题,从电子光学理论出发,将差分真空系统与物镜结合在一起进行优化设计,综合考虑物镜的工作距离和偏转范围,进行具有可变真空,即可变压力(VP)结构的物镜优化设计及性能分析。

2 具有可变真空结构的高分辨率ESEM的物镜优化设计

ESEM的设计初始目标:样品室真空值为10~133 Pa;系统的最优分辨率为1 nm;扫描范围为100 μm×100 μm。

2.1 电子束通道与样品室之间真空气阻结构设计

根据ESEM的设计要求,样品室的真空值为10~133 Pa,同时电子束通道的真空值小于1×10-3 Pa,电子枪真空度值小于1×10-7 Pa,如图1所示,电子束通道末端与样品室之间的真空压差远大于电子枪与电子束通道之间的压差。常规方法是在电子束通道与样品室之间增加节流管,但是真空压差很大导致节流管长且孔径小而带来成像的实际问题。因此,在ESEM中,需要将物镜与真空差分结构两者结合起来,综合考虑后进行优化设计。

图 1. ESEM结构及真空示意图

Fig. 1. Structure and vacuum diagram of ESEM

下载图片 查看所有图片

考虑到在极大压差的电子束通道与样品室之间仅设计一个节流管的常规方法会带来诸多问题,因此,本文在样品室与电子束通道之间(即物镜下极靴附近)设计了两个节流管,在物镜内增设过渡区,形成样品室、过渡区和电子束通道三级真空差分结构。其中过渡区的真空度需要高于样品室的真空度2个数量级,电子束通道的真空度需要高于过渡区的真空度2~3个数量级。双节流管的设计可以在整体上减小节流管长度,一定程度上降低对节流管孔径和长度的要求,从而降低对工作距离和偏转场的影响;也可以减少狭长节流管中的气体残存,降低电子束在节流管中狭小气体空间的漂移的影响。

基于上述提出的三级真空差分结构,根据压差公式11计算可得:连接电子束通道与过渡区之间的节流管长度至少为2 mm,孔直径为0.4 mm;连接过渡区与样品室之间的节流管长度至少为3 mm,孔直径为1 mm。结合物镜的设计经验,对电子束通道与样品室之间的双节流管真空气阻结构进行机械设计,最终设计结果如图2所示。考虑到小孔径长节流管的加工成本和难度,尤其是采用机械加工孔直径0.4 mm的节流管,内壁光洁度难以达到0.4 μm以上,且在抛光过程中难以保持节流管孔径的圆度,因此,采用小孔径薄光阑片代替节流管。但是由于节流管有一定长度,而光阑片比较薄,因此,本文采用多片光阑组合的方式,可更为便捷地通过调节光阑槽内光阑片的孔径和数量来改变真空度,实现所需的压差差分。双节流管真空气阻结构包括上下两个光阑槽,安装于上光阑槽内的上光阑片具有相同尺寸,内孔孔径为d1,厚度为t1,形成第一个节流管。同样地,安装于下光阑槽内的下光阑片也具有相同尺寸,内孔孔径为d2,厚度为t2,形成第二个节流管。

图 2. 双节流管真空气阻结构示意图

Fig. 2. Schematic diagram of vacuum resistance structure of double throttle tube

下载图片 查看所有图片

2.2 高分辨率ESEM的物镜优化设计

根据上述双节流管真空气阻结构的设计,进行高分辨率ESEM物镜的优化设计。在物镜优化设计中,主要选取束斑直径作为优化目标。束斑直径12-13可以近似表示为

dspot=Md02+da2da=dd2+ds2+dc2dd=0.61λe/αds=12Csα3dc=CcαΔV/V

式中:dspot为束斑直径;M为聚光镜的放大倍数;d0为电子枪最小交叉斑直径;da为考虑像差的弥散圆斑直径;dd为电子衍射产生的弥散圆斑直径;ds为最小截面圆平面上球差的弥散圆斑直径;dc为最小截面平面上色差的弥散圆斑直径;λe为电子波长;Cs为球差系数;Cc为色差系数;α为束半角;V为加速电压。

加速电压30 kV对应的电子波长λe=0.00689 nm,设Cs=Cc=1 cm,ΔV/V=10-4,根据式(2)~(5),绘制如图3所示的各像差的弥散圆斑直径与束半角之间的关系图。可以发现,dd随着束半角的增加而减小,且在5 mrad后影响不明显;ds随着束半角的增加而增加,且在10 mrad后影响显著;dc随着束半角的增加而增加,在1 mrad后影响更加明显;da随着束半角的增加先减小后增加,在5 mrad附近总像差较小,相应的物镜性能较好。

图 3. 各像差的弥散圆斑直径与束半角之间的关系图

Fig. 3. Relationship between diameter of diffuse circular spot of each aberration and half angle of beam

下载图片 查看所有图片

物镜一般采用D1>D2的不对称磁透镜14-17,因为当上极靴孔直径D1大于下极靴孔直径D2时,像空间的场急剧减小,物空间的场缓慢减小,有助于减少像差。在强聚焦的物镜设计中,透镜极靴间隙S和极靴孔径D之比(S/D)的选择比较重要,通常S/D的值越小,相应的物镜性能越好,但S/D的值不能太小,因为对于这种不对称物镜,上下极靴间隙较小,下极靴较薄,易产生磁饱和现象17

结合真空气阻结构的设计与上述理论分析,利用Murno’s Electron Beam Software(MEBS)电子光学计算软件对物镜和偏转器进行优化设计,最终采用如图4(a)所示的结构,其中物镜极靴间距S=4.5 mm,上极靴孔径D1=24 mm,下极靴孔径D2=5 mm,S/D=0.31。轴上磁场分布如图4(b)所示,其中轴Bz)为轴上聚焦磁场。

图 4. 优化后的物镜结构与轴上磁场的仿真结果。(a)优化后的物镜结构示意图;(b)激励为936安培匝数(1 A)对应的物镜轴上场分布

Fig. 4. Optimized objective structure and simulation results of magnetic field on axis. (a) Diagram of optimized objective structure; (b) field distribution of objective lens axis corresponding to excitation of 936 ampere-turns (1 A)

下载图片 查看所有图片

设置扫描场为100 μm×100 μm,上偏转线圈绕制6匝,根据几何关系计算,下偏转线圈绕制12匝,如图5(a)和5(b)所示为上偏转中单个偏转线圈的仿真模型及轴上磁场分布结果,其中D1(z)为轴上的偏转磁场,D3(z)为轴上偏转磁场的二阶导。根据仿真计算得偏转灵敏度(线性)为0.64 mm/Amp。

图 5. 上偏转中单个偏转线圈的仿真示意图。(a)仿真模型;(b)轴上磁场分布

Fig. 5. Simulation diagram of a single deflection coil in upper deflection. (a) Simulation model; (b) magnetic field distribution on axis

下载图片 查看所有图片

设置加速电压为30 kV,虚源直径为15 nm,虚源位置为0 mm,物镜位置为351.85 mm,上下偏转分别位于290.85 mm和326.85 mm处。将下极靴的下端面到样品表面的距离定义为工作距离,单物镜模式下,仅考虑聚焦场,不同工作距离下的束斑性能如表1所示;同时考虑聚焦场和偏转场,当工作距离为15 mm时(考虑到二次电子探测器的成像效果选择的保守工作距离),不同扫描场对应的束斑尺寸如图6所示,其中dmin为束斑短轴直径,dmax为束斑长轴直径。电子束在偏转场各位置的分布情况与像差斑分别如图7(a)和7(b)所示。电子束的运动轨迹如图8所示,其中纵轴rz)代表电子束聚焦的特征轨迹,dz)代表电子束在聚焦磁场作用下旋转的角度。xz)代表电子束在x方向的偏转轨迹,yz)代表电子束在y方向的偏转轨迹。

表 1. 仅考虑聚焦场时不同工作距离下的束斑性能参数

Table 1. Performance parameters of beam spot at different working distances when only considering focusing field

Workingdistance /mmExcitation /ATCoefficient of sphericalaberration /cmCoefficient of chromaticaberration /cmApertureangle /mradBeam spotdiameter /nm
11627.840.800.686.70.86
31429.251.420.875.81.00
51287.882.391.065.11.15
101129.626.971.585.02.05
15985.9315.792.124.93.87

查看所有表

图 6. 同时考虑聚焦场和偏转场时不同扫描场对应的束斑尺寸(工作距离为15 mm)

Fig. 6. Beam spot sizes corresponding to different scanning fields when focusing field and deflection field are considered simultaneously (Working distance is 15 mm)

下载图片 查看所有图片

图 7. 电子束斑和像差斑仿真结果。(a)偏转场各位置的电子束斑;(b)偏转场各位置的像差斑

Fig. 7. Simulation results of electron beam spot and aberration spot. (a) Electron beam spots at various locations of deflection field; (b) aberration spots at various locations of deflection field

下载图片 查看所有图片

图 8. 电子束运动轨迹

Fig. 8. Electron beam trajectory

下载图片 查看所有图片

仿真结果显示,随着扫描场增加,束斑形状逐渐椭圆化,束斑直径会增加,且椭圆程度和束斑直径增加的速率变快。当扫描场小于20 μm×20 μm时,对应的束斑短轴直径为6.51 nm,长轴直径为12.32 nm。当扫描场大于20 μm×20 μm时,扫描场的增加对束斑直径影响变大,最终100 μm×100 μm的扫描场对应的束斑短轴直径为66.15 nm,长轴直径为212.30 nm。系统的成像分辨率与电子束的束斑直径密切相关,一般认为入射到样品表面的电子束束斑直径是扫描电镜分辨率的极限,因此可以将上述仿真结果作为实验结果的预测依据。

基于仿真结果进行机械设计,同时将双节流管真空气阻结构与物镜进行装配18,最终形成如图9所示的三级真空差分测试结构,即由电子束通道、物镜密封环、气阻组件组成的电子束通道真空空间;由物镜上极靴、物镜下极靴、物镜密封环、密封圈支架、锥形密封件组、双节流管真空气阻结构组成的过渡区空间;由真空室、气阻组件组成的样品室真空空间。

图 9. 三级真空差分测试结构

Fig. 9. Three-stage vacuum differential test structure

下载图片 查看所有图片

3 性能测试

3.1 磁场测试

通过磁场测试平台对物镜和偏转线圈进行磁场分布测试。物镜线圈的实际匝数为936匝,图10(a)为物镜线圈中分别通入0.5、1、1.5、2 A电流对应的轴上磁场分布;图10(b)为线圈通入1 A电流时分别旋转转台到0°、90°、180°、270°的轴上磁场分布情况。表2为在不同电流下仿真与实际测量的轴上磁场最大值列表,表3为上偏转线圈在不同电流下的轴上磁场最大值列表,表4为下偏转线圈在不同电流下的轴上磁场最大值列表。以上测试结果均可满足设计要求。

图 10. 物镜的磁场测试结果。(a)不同电流下对应的轴上磁场分布情况;(b)线圈通入1 A电流时,转台旋转不同角度的轴上磁场分布情况

Fig. 10. Magnetic field test results of objective lens. (a) Corresponding on-axis magnetic field distributions at different currents; (b) on-axis magnetic field distributions at different angles of rotation of rotary table when coil is energized with 1 A current

下载图片 查看所有图片

表 2. 物镜在不同电流下对应的轴上磁场最大值

Table 2. Maximum magnetic field values on axis corresponding to object lens at different currents

CategoryB(0.5 A)/mTB(1 A)/mTB(1.5 A)/mTB(2 A)/mT
Simulation49.0398.00147.03174.15
Experiment47.3897.02122.45133.78

查看所有表

表 3. 上偏转线圈在不同电流下对应的轴上磁场最大值

Table 3. Maximum magnetic field values on axis corresponding to upper deflection coil at different currents

Current /A0.30.40.50.60.70.8
Bx)/Gs123334
By)/Gs122334

查看所有表

表 4. 下偏转线圈在不同电流下对应的轴上磁场最大值

Table 4. Maximum magnetic field values on axis corresponding to lower deflection coil at different currents

Current /A0.30.40.50.60.70.8
Bx)/Gs345789
By)/Gs123456

查看所有表

3.2 VP模式下分辨率测试

实验采取如下方案:上光阑槽放置5片厚度为0.5 mm且内孔直径为0.4 mm的光阑片;下光阑槽放置6片厚度为0.5 mm且内孔直径为1 mm的光阑片。表5为VP模式下真空度的理论值和实验测试值,结果表明,过渡真空区的真空度高于样品室的真空度2个数量级,电子束通道的真空度高于过渡真空区的真空度2~3个数量级,可满足设计要求。

表 5. VP模式下真空度的理论值和实验测试值

Table 5. Theoretical and experimental test values of vacuum level under VP mode

PositionTheoretical value /PaExperimental test value /Pa
Specimen chamber10-1331037577694110130
Transition space<10-11.7×10-16.5×10-11.11.51.82.22.6
Electron beam channel<10-39.5×10-42.6×10-34.7×10-36.5×10-38.5×10-31.1×10-21.4×10-2

查看所有表

搭建了如图11(a)所示的ESEM实验平台初步进行分辨率测试,采用扫描电镜分析,用标准样品S1000 nm图形样品中的500 nm-200 nm-100 nm的周期性栅条(可识别的尺寸为50 nm-100 nm-250 nm)作为观测对象,其中图11(c)为ZEISS Gemini SEM在高真空状态下目标栅条样品的成像结果。在样品室为133 Pa的低真空环境模式、加速电压为30 kV、灯丝电流为2.36 A、栅压为300 V、吸出极电压为5100 V的条件下,利用搭建的ESEM实验平台对目标栅条成像,实验成像结果如图12所示。

图 11. 实验平台与测试样品。(a)ESEM实验平台;(b)具有可变真空结构的物镜实物;(c)ZEISS Gemini SEM在高真空状态下的目标栅条样品成像结果

Fig. 11. Experimental platform and test sample. (a) ESEM experimental platform; (b) physical object of objective lens with a variable vacuum structure; (c) imaging results of target grid samples under high vacuum by ZEISS Gemini SEM

下载图片 查看所有图片

图 12. 成像结果与imageJ分析结果。(a)20 μm×20 μm的扫描场;(b)80 μm×80 μm的扫描场

Fig. 12. Imaging results and imageJ analysis results. (a) Scanning field of 20 μm×20 μm; (b) scanning field of 80 μm×80 μm

下载图片 查看所有图片

在实际实验中,由于二次电子探测器的安装位置导致工作距离不能太小,否则采集到的信号会很弱,而且受实验平台稳定性等条件的限制,图12对应的工作距离为15 mm。在上述测试条件以及VP模式下,测试结果表明:当扫描场为20 μm×20 μm时,扫描成像分辨率优于可识别的最小尺寸50 nm;当扫描场为80 μm×80 μm时,扫描成像分辨率优于100 nm。上一节的仿真结果表明:在20 μm×20 μm的扫描场下,边缘处束斑的短轴直径为6.51 nm,长轴直径为12.32 nm;在80 μm×80 μm的扫描场下,边缘处束斑的短轴直径为43.80 nm,长轴直径为137.29 nm。考虑到仿真结果是在理想状态下得到的,而在实际调试过程中有以下影响分辨率的因素:

1)目前搭建的ESEM实验平台对中精度不高,导致像散大,超出了现有消像散器的调节范围,从而使得成像分辨率与仿真分辨率有较大差异;

2)为了提高气阻比,使用了多片0.5 mm厚的光阑片,这可能导致电子束以一定发散角在经过多个较厚光阑片时,碰撞光阑内壁产生杂散电子,进而导致成像分辨率下降;

3)样品的限制,用于实验测试的标准样品S1000 nm可分辨的最小尺寸为50 nm。

此外,实验平台的稳定性以及探测器的成像效果也会影响分辨率,因此,认为上述实验结果可初步验证仿真结果。

4 结论与展望

本文从电子光学理论出发,综合考虑了ESEM中物镜结构和真空差分结构,将两者结合在一起进行了优化设计,提出了一种具有可变真空结构的物镜设计方法,并进行了系统的分析、计算和仿真。在理论分析和仿真结果的基础上,搭建了磁场测试平台以及ESEM实验测试平台进行实验,结果表明,在目前实验条件和低真空环境模式下,工作距离为15 mm时,20 μm×20 μm的扫描场对应的成像分辨率优于50 nm。具有可变真空结构物镜的整体闭环设计与测试,为ESEM的研制提供了理论与实验基础。在今后的工作中:

1)将结合实验结果对现有的计算模型作进一步优化,调节节流管的位置,使电子束经过节流管时的发散角较小,从而减少碰撞内壁产生的杂散电子,进而提高分辨率;

2)进一步提高标准样品的图形最小可分辨尺寸,但这也将导致加工难度提升;

3)对实验平台进行改进优化,同时扩大消像散的调节范围,进一步提高其稳定性、对中性能和分辨率使其应用于国产ESEM中。

参考文献

[1] 袁莉民, 蒋蔚霞. 对环境扫描电子显微镜(ESEM)的认识[J]. 现代科学仪器, 2001(2): 53-56.

    Yuan L M, Jiang W X. About environmental scanning electron microscope[J]. Modern Scientific Instruments, 2001(2): 53-56.

[2] Danilatos G D. Introduction to the ESEM instrument[J]. Microscopy Research and Technique, 1993, 25(5/6): 354-361.

[3] 李成星, 刘志祥, 杨培, 等. 伪鞘榕小蜂雌雄成虫触角感器的超微形态、分布及适生意义[J]. 环境昆虫学报, 2020, 42(2): 400-409.

    Li C X, Liu Z X, Yang P, et al. Ultramorphology, distribution and ecological significance of antennal sensilla of female and male Sycoscapter trifemmensis (Hymenoptera: Pteromalidae)[J]. Journal of Environmental Entomology, 2020, 42(2): 400-409.

[4] 巩雪男. 环境扫描电镜在地质中的应用与研究[J]. 西部探矿工程, 2022, 34(4): 61-64.

    Gong X N. Application and research of environmental scanning electron microscope in geology[J]. West-China Exploration Engineering, 2022, 34(4): 61-64.

[5] 胡明玉, 刘章君, 樊财进, 等. 新型硅藻土调湿材料温湿度调节效果及机制[J]. 功能材料, 2019, 50(3): 3014-3019.

    Hu M Y, Liu Z J, Fan C J, et al. Effect of temperature and humidity control and the mechanism of new diatomite humidity-controlling materials[J]. Journal of Functional Materials, 2019, 50(3): 3014-3019.

[6] Myers B D, Dravid V P. Variable pressure electron beam lithography (VP-eBL): a new tool for direct patterning of nanometer-scale features on substrates with low electrical conductivity[J]. Nano Letters, 2006, 6(5): 963-968.

[7] Postek M T, Jr, Vladár A E. New application of variable-pressure/environmental microscopy to semiconductor inspection and metrology[J]. Scanning, 2004, 26(1): 11-17.

[8] Slówko W, Wiatrowski A, Krysztof M. Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM[J]. Micron, 2018, 104: 45-60.

[9] Slówko W, Wiatrowski A. Coaxial ion micro-source for VP/ESEM-E-beam impact mode[J]. Vacuum, 2016, 132: 53-61.

[10] Danilatos G D. Review and outline of environmental SEM at present[J]. Journal of Microscopy, 1991, 162(3): 391-402.

[11] 达道安. 真空设计手册[M]. 2版. 北京: 国防工业出版社, 1991: 98-132.

    DaD A. Vacuum design manual[M]. 2nd ed. Beijing: National Defense Industry Press, 1991: 98-132.

[12] 杜秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002: 216-251.

    DuB C, WangJ R. Electron optics[M]. Beijing: Tsinghua University Press, 2002: 216-251.

[13] 华中一, 顾昌鑫. 电子光学[M]. 上海: 复旦大学出版社, 1992.

    HuaZ Y, GuC X. Electron optics[M]. Shanghai: Fudan University Press, 1992.

[14] 沈一骑. 磁透镜极靴形状对其电子光学参量的影响[J]. 电子显微学报, 1996, 15(1): 59-65.

    Shen Y Q. Influences of polepiece optical parameters shapes on the electron of megnatic lenses[J]. Journal of Chinese Electron Microscopy Society, 1996, 15(1): 59-65.

[15] 陈文雄. 极靴磁饱和如何影响磁透镜的球差系数和色差系数[J]. 电子显微学报, 1988, 7(1): 55-66.

    Chen W X. How does polepiece saturation affect the spherical and chromatic aberration coefficient of the magnetic lenses[J]. Journal of Chinese Electron Microscopy Society, 1988, 7(1): 55-66.

[16] 西门纪业,葛肇生. 电子显微镜的原理和设计[M]. 北京: 科学出版社, 1979:27-35.

    XimenJ Y, GeZ S. Principle and design of electron microscope[M]. Beijing: Science Press, 1979: 27-35.

[17] 史丽娜, 刘俊标, 牛耕, 等. 棒阳极X射线源聚焦系统的电子光学设计[J]. 光学学报, 2022, 42(22): 2234001.

    Shi L N, Liu J B, Niu G, et al. Electro-optical design of focusing system for rod-anode X-ray sources[J]. Acta Optica Sinica, 2022, 42(22): 2234001.

[18] 王鹏飞, 史丽娜, 赵伟霞, 等. 一种物镜及环境扫描电镜: CN115527823A[P]. 2022-12-27.

    WangP F, ShiL N, ZhaoW X, et al. An objective lens and environmental scanning electron microscope: CN115527823A[P]. 2022-12-27.

史丽娜, 王鹏飞, 刘俊标, 王岩, 殷伯华, 韩立. 具有可变真空结构的物镜优化设计及性能分析[J]. 光学学报, 2024, 44(5): 0522002. Lina Shi, Pengfei Wang, Junbiao Liu, Yan Wang, Bohua Yin, Li Han. Optimized Design and Performance Analysis of Objective Lenses with Variable Vacuum Structures[J]. Acta Optica Sinica, 2024, 44(5): 0522002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!