大气与环境光学学报, 2020, 15 (6): 438, 网络出版: 2021-04-22  

一种自制软 X 射线颗粒中和器与同类商业化中和器的性能比较

Performance Comparison Between a Custom-Made Soft X-Ray Neutralizer and a Commercial Counterpart
梁宝玲 1,*许汉冰 2赵军 1,3,4,5
作者单位
1 中山大学大气科学学院, 广东 珠海 519082
2 中山大学公共实验教学中心, 广东 广州 510275
3 南方海洋科学与工程广东省实验室 (珠海), 广东 珠海 519082
4 广东省气候变化与自然灾害研究重点实验室, 广东 广州 510275
5 华南气候环境与全球变化综合观测开放实验站, 广东 广州 510275
摘要
运用扫描电迁移率粒径谱仪对比测试自制软 X 射线中和器 (CM-SXR) 与商业化 TSI 高级气溶胶中和器 (TSI-SXR)。研究结果表明, 对于 20 nm 以上颗粒物, 在差分电迁移率分析仪 (SMPS) 筛分负电荷模式下, 对不同颗粒物 (聚苯乙烯乳胶颗粒、硫酸铵及氯化钠颗粒、室内空气颗粒) 的测试均显示, 使用自制中和器比使用 TSI 中和器测量所得的颗粒物数浓度要高, 浓度差异最大达 40%; 而在筛分正电荷模式下, 其结果正好相反, 最大浓度差达 77%。 造成上述差异的原因可能是由于软 X 射线在两种中和器中放置位置不同而导致放射程度不同以及停留时间存在差异, 从而最终导致中和器中颗粒物正负电荷分布不同。
Abstract
Performance comparison between a custom-made soft X-ray neutralizer (CM-SXR) and a commercial counterpart (TSI-SXR, advanced aerosol neutralizer, model 3088, TSI, USA) is made by using a scanning mobility particle sizer (SMPS). The results show that for all the tested particles (i.e., Polystyrene latex particles, ammonium sulfate particles, sodium chloride particles, and room air particles) with a size greater than 20 nm, the particle number concentration measured by CM-SXR is higher than that measured by TSI-SXR when the differential mobility analyzer (DMA) is operated under the negatively-charged particle mode, and the differences can be up to 40%. However, opposite results have been found when the DMA is operated at the positively-charged mode, that is the particle number concentration measured by TSI-SXR is higher than that measured by CM-SXR and the differences are up to 77%. Possible reasons accounting for the above differences are discussed, and it is deduced that the mounting position of the soft X-ray in the two neutralizers, which results in different exposures of the X-ray and the differences of the residence time when the sample passes the two different neutralizers, is likely the main reason leading to different positively-and negatively-charged particle distribution inside the neutralizers.
参考文献

[1] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013.

[2] McMurry P H, Woo K S, Weber R, et al. Size distributions of 3-10 nm atmospheric particles: Implications for nucleation mechanisms[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2000, 358(1775): 2625-2642.

[3] Woo K S, Chen D R, Pui D Y H, et al. Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events[J]. Aerosol Science and Technology, 2001, 34(1): 75-87.

[4] Iida K, Stolzenburg M R, McMurry P H, et al. An ultrafine, water-based condensation particle counter and its evaluation under field conditions[J]. Aerosol Science and Technology, 2008, 42(10): 862-871.

[5] Jiang J K, Lee M H, Biswas P. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms[J]. Journal of Electrostatics, 2007, 65: 209-220.

[6] Jiang J K, Hogan J C, Chen D R, et al. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms[J]. Journal of Applied Physics, 2007, 102: 034904-034907.

[7] Kulkarni, Pramod N, Norikazu O, et al. Charging of particles in unipolar coronas irradiated by in-situ soft X-rays: Enhancement of capture efficiency of ultrafine particles[J]. Aerosol Science, 2002, 33(9): 1279-1296.

[8] Shimada M, Han B, Okuyama K, et al. Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer[J]. Journal of Chemical Engineering of Japan, 2002, 35(8): 786-793.

[9] Han B, Shimada M, Okuyama K, et al. Classification of monodisperse aerosol particles using an adjustable soft X-ray charger[J]. Powder Technology, 2003, 135-136: 336-344.

[10] Han B, Shimada M, Okuyama K, et al. Unipolar charging of nanosized aerosol particles using soft X-ray photoionization[J]. Aerosol Science and Technology, 2003, 37: 330-341.

[11] Yun K M, Lee S Y, Iskandar F. Effect of X-ray energy and ionization time on the charging performance and nanoparticle formation of a soft X-ray photoionization charger[J]. Advanced Powder Technology, 2009, 20: 529-536.

[12] Jiang J K, Kim C M, Wang X L, et al. Aerosol charge fractions downstream of six bipolar chargers: Effects of ion source, source activity, and flowrate[J]. Aerosol Science and Technology, 2009, 48(12): 1207-1216.

[13] Modesto-Lopez L B, Kettleson E M, Biswas P. Soft X-ray charger (SXC) system for use with electrospray for mobility measurement of bioaerosols[J]. Journal of Electrostatics, 2011, 69(4): 357-364.

[14] Liu Q L, Chen D R. An electrospray aerosol generator with X-ray photoionizer for particle charge reduction[J]. Journal of Aerosol Science, 2014, 76: 148-162.

[15] Yoon Y H, Bong C, Kim D S. Evaluation of the performance of a soft X-ray charger for the bipolar charging of nanoparticles[J]. Particuology, 2015, 18: 165-169.

[16] Lee H M, Soo K C, Shimada M, et al. Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger[J]. Journal of Aerosol Science, 2005, 36(7): 813-829.

[17] Liu Y L, Attoui M, Yang K J, et al. Size-resolved chemical composition analysis of ions produced by a commercial soft X-ray aerosol neutralizer[J]. Journal of Aerosol Science, 2020, 147: 105586.

[18] Kallinger P, Steiner G, Szymanski W W. Characterization of four different bipolar charging devices for nanoparticle charge conditioning[J]. Journal of Nanoparticle Research, 2012, 14: 944.

梁宝玲, 许汉冰, 赵军. 一种自制软 X 射线颗粒中和器与同类商业化中和器的性能比较[J]. 大气与环境光学学报, 2020, 15(6): 438. LIANG Baoling, XU Hanbing, ZHAO Jun. Performance Comparison Between a Custom-Made Soft X-Ray Neutralizer and a Commercial Counterpart[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 438.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!