压电与声光, 2022, 44 (2): 205, 网络出版: 2022-06-14  

AlN/PZT复合压电薄膜层SAW激励与传播研究

Research on Excitation and Propagation of Surface Acoustic Wave in AlN/PZT Composite Piezoelectric Film
作者单位
西安科技大学 理学院, 陕西 西安 710054
摘要
该文在单晶硅基底上设计了AlN/PZT复合压电薄膜层声表面波(SAW)器件,采用有限元法(FEM)研究了复合压电材料厚度(PZT厚度hPZT和AlN厚度hAlN)对AlN/IDT/PZT/Si结构中零阶、一阶SAW的相速度、机电耦合系数和电极反射系数的影响,根据色散特性得到最优化薄膜厚度。结果表明,AlN/IDT/PZT/Si结构中,当hPZT =0, 025λ,hAlN=λ时,零阶、一阶SAW都能取得最高相速度(分别为5 582 m/s和5 711 m/s),适用于高频器件设计; 在hPZT=0, 2λ,hAlN=0, 1λ时,零阶SAW波的机电耦合系数最大(为21, 55%),但此时相速度最小(仅为2 890 m/s),适用于移动通信领域宽带低损耗SAW滤波器和延迟线结构信号处理器件的设计。
Abstract
In this paper, the AlN/PZT composite piezoelectric thin film layer SAW device on the monocrystalline silicon substrate was designed, The finite element method was used to study the influences of the thickness of composite piezoelectric material (the PZT thickness hPZT and AlN thickness hAlN) on the phase velocity of zero-order SAW and first-order SAW, electromechanical coupling coefficient and electrode reflection coefficient in AlN/IDT/PZT/Si structure, According to the dispersion characteristics, the optimum film thickness was obtained, The results show that when hPZT=0, 025λ and hAlN =λ in AlN/IDT/PZT/Si structure, the highest phase velocities of the zero-order and first-order SAW are 5 582 m/s and 5 711 m/s respectively, which are suitable for the design of high frequency devices, When hPZT=0, 2λ,hAlN =0, 1λ, the electromechanical coupling coefficient of zero-order SAW wave is the highest of 21, 55%, but the phase velocity is the smallest of only 2 890 m/s, which is suitable for the design of the signal processing devices of wideband low loss surface acoustic wave filter and delay linear structure in the mobile communication field,
参考文献

[1] RAYLEIGH L, On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society,1885,1(1):4-11,

[2] WESER R,WINKLER A,WEIHNACHT M,et al, The complexity of surface acoustic wave fields used for microfluidic applications[J]. Ultrasonics,2020,106:106160,

[3] FU Y Q,LUO J K,NGUYEN N T,et al, Advances in piezoelectric thin films for acoustic biosensors,acoustofluidics and lab-on-chip applications[J]. Progress in Materials Science,2017,89:31-91,

[4] TRIVEDI S,NEMADE H B, Finiteelement simulation of Love wave resonator for DNA detection[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics,2015,7(4):210-218,

[5] WANG W,XIE X,CHEN G,et al, Temperature- compensated Love wave based gas sensor on waveguide structure of SiO2/36°-YX LiTaO3[J]. Smart Materials & Structures,2015,24(1):065019,

[6] 潘峰, 声表面波材料与器件[M]. 北京: 科技出版社,2012,

[7] ZHANG Q Z,HAN T,CHEN J,et al, Enhanced coupling factor of surface acoustic wave devices employing ScAlN/diamond layered structure with embedded electrodes[J]. Diamond and Related Materials,2015,58:31-34,

[8] ADLER E L, Matrix methods applied to acoustic waves in multilayers[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1990,37(6): 485-490,

[9] ROKHLIN S I,WANG L, Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites[J]. International Journal of Solids and Structures,2002,39:4133-4149,

[10] WANG L,ROKHLIN S I, Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method[J]. IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2004,51(9): 1060-1071,

[11] LAN X D,ZHANG S Y,FAN L, Simulation of SAW humidity sensors based on ZnO/R-sapphire etructures[J]. Approximation Theory and Its Applications,2016,16(11): 36-54,

[12] MAOUHOUB S,AOURA Y,MIR A, FEM simulation of Rayleigh waves for SAW devices based on ZnO/AlN/Si[J]. Microelectronic Engineering,2015,136: 22-25,

[13] 耐日嘎,马俊,王园园,等, 基于 ScAlN/6H-SiC 结构的声表面波传播特性[J]. 压电与声光,2022,44(1):6-9,

文芷菁, 张涛, 柯贤桐, 刘鑫鑫, 曹晓闯, ALIREZA Baghai Wadji. AlN/PZT复合压电薄膜层SAW激励与传播研究[J]. 压电与声光, 2022, 44(2): 205. WEN Zhijing, ZHANG Tao, KE Xiantong, LIU Xinxin, CAO Xiaochuang, ALIREZA Baghai Wadji. Research on Excitation and Propagation of Surface Acoustic Wave in AlN/PZT Composite Piezoelectric Film[J]. Piezoelectrics & Acoustooptics, 2022, 44(2): 205.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!