大气与环境光学学报, 2022, 17 (3): 360, 网络出版: 2022-07-22  

偏振氧A带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究

Information content analysis and sensitivity of retrieval of aerosol vertical profiles using polarimetric oxygen A-band spectra
作者单位
合肥工业大学光电技术研究院特种显示与成像技术安徽省技术创新中心, 省部共建现代显示技术国家重点实验室培育基地, 安徽 合肥 230009
摘要
为评估从偏振氧 A 带光谱中提取的气溶胶垂直剖面的信息量及提高光谱分辨率对偏振测量的气溶胶垂直剖面信息的影响, 采用线性化矢量辐射传输模型 (UNL-VRTM), 对氧 A 波段线偏振度 (DoLP) 星载测量中气溶胶垂直剖面的信息量及不同观测条件和光谱分辨率下 DoLP 的气溶胶峰高信息量变化的影响因素进行分析。研究结果表明, DoLP 所包含的气溶胶峰高的信息比辐射度更多, 辐射度的信号自由度 (DFS) 最高为 0.49, 而 DoLP 的 DFS 为 0.76; 且随着光谱分辨率的提高, 气溶胶峰高信息量增加, 对表面反射率、观测几何以及先验误差的依赖大大降低。
Abstract
In order to evaluate the amount of vertical information on aerosol extinction profiles extracted from the O2 A-band polarization spectrum and the influence of improving spectral resolution on aerosol vertical profile information measured by polarization, the Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to analyze the information from satellite measurements of O2 A-band degree of linear polarization (DoLP) and the influencing factors of aerosol peak height information of DoLP under different observation conditions and spectral resolution. Simulation results show that DoLP contains more information content for aerosol peak height than radiation intensity, and the maximum degree of freedom of signal (DFS) of radiation intensity is 0.49, while the DFS of DoLP is 0.76. In addition, with the improvement of spectral resolution, the information content of aerosol peak height increases, and the dependence on surface albedo, observation geometry and prior error is greatly reduced.
参考文献

[1] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[C]. Climate Change 2007: The Physical Science Basis, 2007: 129-234.

[2] Vuolo M R, Schulz M, Balkanski Y, et al. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 877-897.

[3] Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of the Atmospheric Sciences, 1977, 34(7): 1149-1152.

[4] Colarco P R, Schoeberl M R, Doddridge B G, et al. Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties[J]. Journal of Geophysical Research Atmospheres, 2004,109(D6): D06203.

[5] Zarzycki C M, Bond T C. How much can the vertical distribution of black carbon affect its global direct radiative forcing?[J]. Geophysical Research Letters, 2010, 37(20): L20807.

[6] Koffi B, Schulz M, Bréon F M, et al. Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D10): D10201.

[7] Samset B H, Myhre G, Schulz M, et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty[J]. Atmospheric Chemistry and Physics, 2013, 13(5): 2423-2434.

[8] Boesche E, Stammes P, Preusker R, et al. Polarization of skylight in the O2A band: Effects of aerosol properties[J]. Applied Optics, 2008, 47(19): 3467-3480.

[9] Wang J, Xu X G, Ding S G, et al. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 510-528.

[10] Xu X G, Wang J, Wang Y, et al. Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrange-1 point[J]. Geophysical Research Letters, 2017, 44(14): 7544-7554.

[11] Corradini S, Cervino M. Aerosol extinction coefficient profile retrieval in the oxygen A-band considering multiple scattering atmosphere. Test case: SCIAMACHY nadir simulated measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 97(3): 354-380.

[12] Xu X G, Wang J, Wang Y, et al. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: Hourly results from EPIC/DSCOVR in deep space[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3269-3288.

[13] Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 474-511.

[14] Richardson M, Leinonen J, Cronk H Q, et al. Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer[J]. Atmospheric Measurement Techniques, 2019, 12(3): 1717-1737.

[15] Zeng Z C, Chen S H, Natraj V, et al. Constraining the vertical distribution of coastal dust aerosol using OCO-2 O2 A-band measurements[J]. Remote Sensing of Environment, 2020, 236: 111494.

[16] Satheesh S K, Torres O, Remer L A, et al. Improved assessment of aerosol absorption using OMI-MODIS joint retrieval[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D5): D05209.

[17] Chen X, Yang D X, Cai Z N, et al. Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board TanSat: The effect of multi-angle measurement[J]. Remote Sensing, 2017, 9(2): 183.

[18] Hollstein A, Fischer J. Retrieving aerosol height from the oxygen A band: A fast forward operator and sensitivity study concerning spectral resolution, instrumental noise, and surface inhomogeneity[J]. Atmospheric Measurement Techniques, 2014, 7(5): 1429-1441.

[19] Geddes A, Bsch H. Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space[J]. Atmospheric Measurement Techniques, 2015, 8(2): 859-874.

[20] Colosimo S F, Natraj V, Sander S P, et al. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band[J]. Atmospheric Measurement Techniques, 2016, 9(4): 1889-1905.

[21] Ding S G, Wang J, Xu X G. Polarimetric remote sensing in oxygen A and B bands: Sensitivity study and information content analysis for vertical profile of aerosols[J]. Atmospheric Measurement Techniques, 2016, 9(5): 2077-2092.

[22] Zheng F X, Hou W Z, Li Z Q . Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: An analysis on multi-angle dependence and a posteriori error[J]. Acta Physica Sinica, 2019, 68(4): 040701.

[23] Li Z Q, Xie Y S, Hong J, et al. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17.

[24] Xu X G, Wang J. UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications[M]. Kokhanovsky A. Springer Series in Light Scattering. Cham: Springer, 2019: 1-69.

[25] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

[26] Hovenier J W, van der Mee C, Domke H. Transfer of Polarized Light in Planetary Atmospheres[M]. Dordrecht: Springer Netherlands, 2004.

程璐璐, 施文杰, 夏果, 王江涛, 陈巧芹, 金施群. 偏振氧A带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360. CHENG Lulu, SHI Wenjie, XIA Guo, WANG Jiangtao, CHEN Qiaoqin, JIN Shiqun. Information content analysis and sensitivity of retrieval of aerosol vertical profiles using polarimetric oxygen A-band spectra[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 360.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!