陈亚红 1,*董震 1刘永雷 1刘琳 1[ ... ]蔡阳健 2,**
作者单位
摘要
1 苏州大学物理科学与技术学院,江苏 苏州 215006
2 山东师范大学物理与电子科学学院,山东 济南 250358
回顾了光场相干与偏振联合调控的研究进展,重点介绍了具有特殊空间相干结构的二维部分相干矢量光束的表征、合成及在复杂环境中的鲁棒传输特性;结合纳米光子学的发展,将二维部分相干矢量光束推广到了三维部分相干矢量光场,给出了三维部分相干矢量光场的相干与偏振表征,分析了部分相干紧聚焦矢量光场中的三维偏振结构,包括偏振维度、三维非寻常偏振态、自旋角动量结构等。研究表明相干性在赋予了矢量结构光场新颖自由度的同时,导致了二维矢量光束的鲁棒传输特性以及紧聚焦矢量光场新型三维偏振结构。
部分相干光场 矢量光场 光场调控 相干与偏振 光场相干结构调控 
光学学报
2024, 44(10): 1026007
王为民 1寇君龙 1,2,4,**陆延青 1,3,4,*
作者单位
摘要
1 南京大学电子科学与工程学院,江苏 南京 210023
2 南京大学集成电路学院,江苏 苏州 215163
3 南京大学现代工程与应用科学学院,江苏 南京 210023
4 武进南京大学未来技术创新研究院,江苏 常州 213153
二维光子晶体板的介电常数分布具有面内的空间周期性,并支持可辐射到自由空间的导模共振。这些辐射到远场的模式可以用动量进行标记,并具有偏振态,因此可以定义动量空间中的偏振场。通过研究不同结构参数和对称性下偏振场的特性以及与外界相互作用的规律,能够为光场操控提供新思路。本文介绍了二维光子晶体板在动量空间中的偏振场的相关特性,并综述了近年来相关的研究和应用。
物理光学 光子晶体 偏振场 偏振奇点 拓扑电荷 
光学学报
2024, 44(10): 1026003
作者单位
摘要
1 南开大学现代光学研究所,天津市微尺度光学信息技术科学重点实验室,天津 300350
2 中国科学院自动化研究所,中国科学院分子影像重点实验室,北京 100190
3 河北医科大学第二医院神经外科,河北 石家庄 050000
脑胶质瘤是一种侵袭性的恶性原发性脑肿瘤,术中准确区分胶质瘤和正常脑组织极具挑战性。基于高分辨偏振敏感光学相干层析术(PS-OCT)对正常小鼠脑和胶质瘤模型小鼠脑进行成像,计算了强度、累积相位延迟和累积光轴信息。结果表明,从PS-OCT图像中可以清楚地显示出鼠脑中的纤维结构及其取向;借助PS-OCT图像中丰富的偏振信息,可以准确区分鼠脑胶质瘤区和正常区;基于计算的光轴标准差可以有效区分胶质瘤和正常脑组织。研究结果表明,高分辨PS-OCT在脑组织成像及脑胶质瘤识别方面具有很大的临床应用潜力。
医用光学 偏振敏感光学相干层析术 脑成像 胶质瘤 
中国激光
2024, 51(9): 0907020
牟克翔 1,2谭政 1,3王力 1,3孙献平 1,3[ ... ]周欣 1,2,3,*
作者单位
摘要
1 中国科学院精密测量科学与技术创新研究院磁共振波谱与成像全国重点实验室(中国科学院),湖北 武汉 430071
2 华中科技大学武汉光电国家研究中心,湖北 武汉 430074
3 中国科学院大学,北京 100049
磁场量子传感器(超导量子干涉仪、激光泵浦型原子传感器、金刚石氮-空位色心等)利用量子效应对磁场进行精密测量。激光泵浦型原子传感器具有灵敏度高、体积小、功耗低和易维护的优点,已成为当前快速发展的一个研究领域。激光泵浦型原子传感器已被应用于核磁共振领域,用来获取物质更精确的核磁共振波谱以及实现特殊条件下对样品的测量。特别地,在延伸至零场-超低场(磁感应强度B<1 μT)的核磁共振研究中,激光泵浦型原子传感器展现出了许多重要应用特性,拓展了人们对生物、化学物质更精细结构的探测和解析能力,进而使得核磁共振测量与研究覆盖了高场(B>1 T)、低场(μT<B<1 T)和零场-超低场(B<1 μT)整个工作磁场范围。本文简要介绍了基于激光泵浦型原子传感器的零场-超低场核磁共振的基本原理和相关技术,包括核磁样品的极化增强(强磁场热极化、激光泵浦极化、动态核极化、仲氢诱导极化等)以及传输、编码和探测等,综述了近几年来基于激光泵浦型原子传感器的核磁共振研究进展,并展望了该技术的发展趋势和应用前景。
医用光学 零场-超低场核磁共振 激光泵浦型原子传感器 样品极化增强 波谱 磁共振影像 
中国激光
2024, 51(9): 0907001
Author Affiliations
Abstract
1 Shandong Inspur Artificial Intelligence Research Institute Company Limited, Jinan 250013, China
2 MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and enormous information capacity for applications in optical displays and encryption. In this work, a tunable polarization multiplexing holographic metasurface controlled by an external magnetic field is proposed. The elaborately designed nanoantennas are arranged on the magneto-optical intermediate layer, which is placed on the metallic reflecting layer. Since the non-diagonal elements of the dielectric tensor of the magneto-optical material become non-zero values once the external magnetic field is applied, the differential absorption for the left and right circularly polarized light can be generated. Meanwhile, the amplitude and phase can be flexibly modulated by changing the sizes of the nanoantennas. Based on this, the dynamic multichannel holographic display of metasurface in the linear and circular polarization channels is realized via magnetic control, and it can provide enhanced security for optical information storage. This work paves the way for the realization of magnetically controllable phase modulation, which is promising in dynamic wavefront control and optical information encryption.
active metasurface magneto-optical effect polarization multiplexing holography dynamic holographic display 
Chinese Optics Letters
2024, 22(4): 043601
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 School of Information and Communications, National University of Defense Technology, Wuhan 430035, China
3 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
4 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
High-power ultrafast laser amplification based on a non-polarization maintaining fiber chirped pulse amplifier is demonstrated. The active polarization control technology based on the root-mean-square propagation (RMS-prop) algorithm is employed to guarantee a linearly polarized output from the system. A maximum output power of 402.3 W at a repetition rate of 80 MHz is realized with a polarization extinction ratio (PER) of > 11.4 dB. In addition, the reliable operation of the system is verified by examining the stability and noise properties of the amplified laser. The M2 factor of the laser beam at the highest output power is measured to be less than 1.15, indicating a diffraction-limited beam quality. Finally, the amplified laser pulse is temporally compressed to 755 fs with a highest average power of 273.8 W. This is the first time, to the best of our knowledge, that the active polarization control technology was introduced into the high-power ultrafast fiber amplifier.
active polarization control root-mean-square propagation algorithm linearly polarized laser chirped pulse amplification femtosecond laser fiber laser 
Chinese Optics Letters
2024, 22(4): 041403
姚悦 1,2裴浩杰 1,2李浩 3万嘉晨 1,2[ ... ]马辉 1,2,*
作者单位
摘要
1 清华大学深圳国际研究生院,广东 深圳 518055
2 广东省偏振光学检测与成像工程技术研究中心,广东 深圳 518055
3 北京大学深圳医院病理科,广东 深圳 518036
数字病理技术利用经过数字化的病理样本显微图像及其特征,并配合人工智能技术,实现生物组织病变特征的定量评估和判定,辅助临床医生做出诊断结论。利用偏振光照明和偏振探测可以实现全偏振成像,图像每个像素的偏振特征都包含更加丰富的信息,特别是普通光学成像难以获得的亚细胞超分辨微观结构特征信息,可为病变组织的识别和定量评估提供更为有效的手段。本文总结了全偏振成像技术,并结合典型临床应用归纳总结了全偏振显微图像的数据分析方法和最新进展。
医用光学 全偏振显微成像 偏振数字病理 偏振特征提取 机器学习 
中国激光
2024, 51(9): 0907008
作者单位
摘要
1 桂林电子科技大学信息与通信学院广西高校微电子器件与集成电路重点实验室,广西 桂林 541004
2 桂林电子科技大学光电工程学院,广西 桂林 541004
提出一种偏振不敏感且高选择性的新型纳米结构颜色滤波器。当平面光入射到超材料表面时,金属与介质交界处会发生表面等离子体共振和光学异常透射现象,部分频率的光被束缚在微纳结构中,而其他频率的光发生透射,从而实现滤色效果。采用时域有限差分法,对4种不同结构的滤波器的透射光谱和颜色显示规律进行研究。同时,还研究了结构周期、圆环直径、十字架宽度和偏振角等参数对透射光谱和滤波特性的影响。结果表明:与单层表面等离子结构相比,所提双层等离子体亚表面结构模型的透射率更高;在可见光波段内,该滤波器具有偏振不敏感特性,半峰全宽的最小值为23.26 nm,并且具有90.5%的高透射率。这项研究为下一代颜色滤波器的设计提供了理论参考。
表面光学 高传输效率 偏振不敏感 高选择性 双层等离子体 可见光 
光学学报
2024, 44(8): 0824001
作者单位
摘要
上海大学通信与信息工程学院,特种光纤与光接入网省部共建国家重点实验室培育基地,特种光纤与先进通信国际合作联合实验室,上海 200444
传统的光学透镜存在体积较大、聚焦效率低、焦点半峰全宽较大以及在高数值孔径的透镜中性能表现不佳等问题。而光学超表面凭借其自身的亚波长结构,具有强大的操控光相位的能力。相比于传统透镜,超透镜具有尺寸小、厚度薄以及聚焦性能好等优点。本文提出一种基于目标优先算法的逆向设计方法,设计了一种基于低折射率聚合物材料的超透镜结构。其在传播方向上的厚度仅为3.2 μm,在1550 nm的工作波长下,数值孔径为0.82,聚焦效率为72%。较传统设计方法而言,该方法具有计算复杂度低和设计效率高等优点。设计的器件可采用高精度微纳打印技术实现批量化的快速制造。考虑到超透镜在制备过程中存在制造容差,进一步讨论了超透镜轮廓偏移以及三维旋转操作对所设计的二维超透镜的影响。
超表面 超透镜 逆向设计 目标优先算法 偏振不依赖性 
光学学报
2024, 44(8): 0822002
Author Affiliations
Abstract
1 School of Physics and Materials Science Nanchang University Nanchang 330031, P. R. China
2 School of Materials Science and Engineering Nanchang Hangkong University, Nanchang 330063, P. R. China
Flexoelectric effect describes the electromechanical coupling between the strain gradient and its internal polarization in all dielectrics. Despite this universality, the resulting flexoelectric field remains small at the macroscopic level. However, in nanosystems, the size-dependent effect of flexoelectricity becomes increasingly significant, leading to a notable flexoelectric field that can strongly influence the material’s physical properties. This review aims to explore the flexoelectric effect specifically at the nanoscale. We achieve this by examining strain gradients generated through two distinct methods: internal inhomogeneous strain and external stimulation. In addition, advanced synthesis techniques are utilized to enhance the properties and functionalities associated with flexoelectricity. Furthermore, we delve into other coupled phenomena observed in thin films, including the coupling and utilization of flexomagnetic and flexophotovoltaic effects. This review presents the latest advancements in these areas and highlights their role in driving further breakthroughs in the field of flexoelectricity.
Flexoelectric effect strain gradient polarization nano-thin film flexomagnetic flexophotovoltaic 
Journal of Advanced Dielectrics
2024, 14(1): 2330001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!