Author Affiliations
Abstract
1 School of Electronics Information Engineering, Beihang University, Beijing 100191, China
2 Aerospace Institute of Advanced Material & Processing Technology, Beijing 100074, China
3 School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
4 Hubei Longzhong Laboratory, Xiangyang 441000, China
In this paper, we propose an ultrabroadband chiral metasurface (CMS) composed of S-shaped resonator structures situated between two twisted subwavelength gratings and dielectric substrate. This innovative structure enables ultrabroadband and high-efficiency linear polarization (LP) conversion, as well as asymmetric transmission (AT) effect in the microwave region. The enhanced interference effect of the Fabry–Perot-like resonance cavity greatly expands the bandwidth and efficiency of LP conversion and AT effect. Through numerical simulations, it has been revealed that the cross-polarization transmission coefficients for normal forward (-z) and backward (+z) incidence exceed 0.8 in the frequency range of 4.13 to 17.34 GHz, accompanied by a polarization conversion ratio of over 99%. Furthermore, our microwave experimental results validate the consistency among simulation, theory, and measurement. Additionally, we elucidate the distinct characteristics of ultrabroadband LP conversion and significant AT effect through analysis of polarization azimuth rotation and ellipticity angles, total transmittance, AT coefficient, and electric field distribution. The proposed CMS structure shows excellent polarization conversion properties via AT effect and has potential applications in areas such as radar, remote sensing, and satellite communication.
chiral metasurface linear polarization conversion asymmetric transmission Fabry–Perot-like resonance electromagnetic interference model 
Chinese Optics Letters
2023, 21(11): 113602
Author Affiliations
Abstract
1 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
2 School of Physical Science and Technology, Provincial Key Laboratory for Thin Films and Institute for Advanced Study, Soochow University, Suzhou 215006, China
3 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
4 State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
Topological photonic states have promising applications in slow light, photon sorting, and optical buffering. However, realizing such states in non-Hermitian systems has been challenging due to their complexity and elusive properties. In this work, we have experimentally realized a topological rainbow in non-Hermitian photonic crystals by controlling loss in the microwave frequency range for what we believe is the first time. We reveal that the lossy photonic crystal provides a reliable platform for the study of non-Hermitian photonics, and loss is also taken as a degree of freedom to modulate topological states, both theoretically and experimentally. This work opens a way for the construction of a non-Hermitian photonic crystal platform, will greatly promote the development of topological photonic devices, and will lay a foundation for the real-world applications.
topological rainbow non-Hermitian photonics photonic crystal slow-light effect 
Chinese Optics Letters
2023, 21(12): 123601
Author Affiliations
Abstract
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
We propose and experimentally demonstrate a high quality (Q)-factor all-silicon bound state in the continuum (BIC) metasurface with an imperforated air-hole array. The metasurface supports two polarization-insensitive BICs originated from guided mode resonances (GMRs) in the frequency range of 0.4 to 0.6 THz, and the measured Q-factors of the two GMRs are as high as 334 and 152, respectively. In addition, the influence of the thickness of the silicon substrate on the two resonances is analyzed in detail. The proposed all-silicon THz metasurface has great potential in the design and application of high-Q metasurfaces.
bound state in the continuum all-silicon metasurface high-quality factor terahertz 
Chinese Optics Letters
2023, 21(11): 113601
Lingxiao Shan 1Qi Liu 1,2Yun Ma 1Yali Jia 1[ ... ]Ying Gu 1,2,3,4,5,*
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
2 Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
4 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
5 Hefei National Laboratory, Hefei 230088, China
Hybrid metal-dielectric structures combine the advantages of both metal and dielectric materials, enabling high-confined but low-loss magnetic and electric resonances through deliberate arrangements. However, their potential for enhancing magnetic emission has yet to be fully explored. Here, we study the magnetic and electric Purcell enhancement supported by a hybrid structure composed of a dielectric nanoring and a silver nanorod. This structure enables low Ohmic loss and highly-confined field under the mode hybridization of magnetic resonances on a nanoring and electric resonances on a nanorod in the optical communication band. Thus, the 60-fold magnetic Purcell enhancement and 45-fold electric Purcell enhancement can be achieved. Over 90% of the radiation can be transmitted to the far field. For the sufficiently large Purcell enhancement, the position of emitter has a tolerance of several tens of nanometers, which brings convenience to experimental fabrications. Moreover, an array formed by this hybrid nanostructure can further enhance the magnetic Purcell factors. The system provides a feasible option to selectively excite magnetic and electric emission in integrated photonic circuits. It may also facilitate brighter magnetic emission sources and light-emitting metasurfaces with a more straightforward design.
Purcell effect magnetic emission hybrid structures 
Chinese Optics Letters
2023, 21(10): 103602
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
2 School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China
In this Letter, we report on the investigations of nonlinear scattering of plasmonic nanoparticles by manipulating ambient environments. We create different local thermal hosts for gold nanospheres that are immersed in oil, encapsulated in silica glass and also coated with silica shells. In terms of regulable effective thermal conductivity, silica coatings are found to contribute significantly to scattering saturation. Benefitting from the enhanced thermal stability and the reduced plasmonic coupling provided by the shell-isolated nanoparticles, we achieve super-resolution imaging with a feature size of 52 nm (λ/10), and we can readily resolve pairs of nanoparticles with a gap-to-gap distance of 5 nm.
noble metal nanoparticles plasmonic scattering effective thermal conductivity super-resolution 
Chinese Optics Letters
2023, 21(10): 103601
Author Affiliations
Abstract
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
All-dielectric metasurfaces are usually limited because of their static functionality and small scale. In this paper, we use an easy nanofabrication technique to fabricate all-dielectric metasurfaces with the advantages of having dynamic tunability and a large area. Using an anodized aluminum oxide (AAO) template as an evaporation mask, a large-area metasurface embedded in polydimethylsiloxane (PDMS) (>2 cm2) is fabricated. The metasurface exhibits remarkable electric dipole (ED) and magnetic dipole (MD) resonances. Based on the solvent-swelling effect of PDMS in 20% toluene, the ED/MD resonance peak shifts dynamically 40 nm to red. So far, to the best of our knowledge, a large-area metasurface embedded in PDMS and achieved by using the AAO template method has not appeared.
all-dielectric metasurface light manipulation nanodisk dynamic tunability 
Chinese Optics Letters
2023, 21(7): 073601
Author Affiliations
Abstract
1 School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China
2 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
3 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
SrMoO3 (SMO) thin films are deposited on LaAlO3 substrates by magnetron sputtering. The effects of ambient temperature on the structural, electrical, and optical properties of the films are investigated. As the temperature increases from 23°C to 800°C, the SMO film exhibits high crystallinity and low electrical resistivity, and the real part of dielectric functions becomes less negative in the visible and near-IR wavelength range, and the epsilon near zero (ENZ) wavelength increases from 460 nm to 890 nm. The optical loss of the SMO film is significantly lower than that of Au, and its plasmonic performance is comparable to or even higher than TiN in the temperature range of 23°C to 600°C. These studies are critical for the design of high-temperature SMO-based plasmonic devices.
plasmonic materials strontium molybdate thin films optical losses temperature 
Chinese Optics Letters
2023, 21(5): 053601
Author Affiliations
Abstract
1 School of Information Science and Engineering, University of Jinan, Jinan 250022, China
2 Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
An ultrathin angle-insensitive color filter enabling high color saturation and a wide color gamut is proposed by relying on a magnesium hydride-hydrogenated amorphous silicon (MgH2-a-Si:H) lossy dielectric layer. Based on effective medium theory, the MgH2-a-Si:H layer with an ultrathin thickness can be equivalent to a quasi-homogeneous dielectric layer with an effective complex refractive index, which can be tuned by altering the thickness of MgH2 to obtain the targeted value of the imaginary part, corresponding to the realization of high color saturation. It is verified that the proposed color filter offers highly enhanced color saturation in conjunction with a wide color gamut by introducing a few-nanometer thick MgH2 layer. As the MgH2-a-Si:H layer retains the advantages of high refractive index and tiny thickness, the proposed color filter exhibits large angular tolerance up to ±60°. In addition, MgH2 with an unstable property can interconvert with Mg under a dehydrogenation/hydrogenation reaction, which empowers the proposed color filter with dynamically tunable output color. The proposed scheme shows great promise in color printing and ultracompact display devices with high color saturation, wide gamut, large angular tolerance, and dynamic tunability.
color filter effective medium theory lossy dielectric layer color saturation angle insensitivity 
Chinese Optics Letters
2023, 21(3): 033602
Author Affiliations
Abstract
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
Noble metallic nanostructures with strong electric near-field enhancement can significantly improve nanoscale light–matter interactions and are critical for high-sensitivity surface-enhanced Raman spectroscopy (SERS). Here, we use an azimuthal vector beam (AVB) to illuminate the plasmonic tips circular cluster (PTCC) array to enhance the electric near-field intensity of the PTCC array, and then use it to improve SERS sensitivity. The PTCC array was prepared based on the self-assembled and inductive coupled plasmon (ICP) etching methods. The calculation results show that, compared with the linearly polarized beam (LPB) and radial vector beam excitations, the AVB excitation can obtain stronger electric near-field enhancement due to the strong resonant responses formed in the nanogap between adjacent plasmonic tips. Subsequently, our experimental results proved that AVB excitation increased SERS sensitivity to 10-13 mol/L, which is two orders of magnitude higher than that of LPB excitation. Meanwhile, the PTCC array had excellent uniformity with the Raman enhancement factor calculated to be 2.4×108. This kind of vector light field enhancing Raman spectroscopy may be applied in the field of sensing technologies, such as the trace amount detection.
surface-enhanced Raman spectroscopy plasmonic tips circular cluster array azimuthal vector beam surface plasmon polaritons 
Chinese Optics Letters
2023, 21(3): 033603
Author Affiliations
Abstract
1 Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
We propose a chip-integratable cylindrical vector (CV) beam generator by integrating six plasmonic split ring resonators (SRRs) on a planar photonic crystal (PPC) cavity. The employed PPC cavity is formed by cutting six adjacent air holes in the PPC center, which could generate a CV beam with azimuthally symmetric polarizations. By further integrating six SRRs on the structure defects of the PPC cavity, the polarizations of the CV beam could be tailored by controlling the opening angles of the SRRs, e.g., from azimuthal to radial symmetry. The mechanism is governed by the coupling between the resonance modes in SRRs and PPC cavity, which modifies the far-field radiation of the resonance mode of the PPC cavity with the SRR as the nano-antenna. The integration of SRRs also increases the coupling of the generated CV beam with the free-space optics, such as an objective lens, promising its further applications in optical communication, optical tweezer, imaging, etc.
vector beams photonic crystal plasmonics integrated photonics 
Chinese Optics Letters
2023, 21(3): 033601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!