压电与声光, 2022, 44 (4): 547, 网络出版: 2022-10-29  

聚苯乙烯/六方氮化硼微波复合基板的制备与性能研究

Investigation on Preparation and Properties of Polystyrene/Hexagonal Boron Nitride Microwave Composite Substrates
作者单位
1 西安工业大学 光电工程学院, 陕西 西安 100191
2 中国科学院 上海硅酸盐研究所 信息功能材料与器件研究中心, 上海 201899
摘要
针对高功率器件、高密度封装等微波通信领域对高性能微波复合基板的迫切需求, 该文提出了一种将双螺杆造粒和热压成型结合的新技术, 制备了以高抗冲聚苯乙烯(HIPS)为基体、六方氮化硼(h-BN)陶瓷为填料的高导热微波复合基板, 并对基板的显微结构、热学性能和介电性能进行了全面表征。结果表明, 采用大粒径(25 μm)的h-BN(h-BN25)比小粒径(5 μm)的h-BN(h-BN5)填充后更有利于提高复合基板的热导率(λ), 降低其介电损耗(tan δ)。随着h-BN25质量分数(w(h-BN25))从0增加至70%, HIPS/h-BN25微波复合基板的λ从0.13 W·m-1·K-1提高到7.43 W·m-1·K-1(面内)和2.55 W·m-1·K-1(面间), 分别是纯HIPS的57倍和20倍, 表明采用以上制备技术能实现h-BN在HIPS基体中的定向排列, 构建有效的面内导热网络。同时复合基板的tan δ由7.3×10-4降低至5.3×10-4(10 GHz下), 热膨胀系数α从93.8×10-6/K降至18.7×10-6/K。填充w(h-BN25)=70%的HIPS/ h-BN25微波复合基板综合性能优异, 10 GHz时, 其介电常数εr=3.9, tan δ=5.3×10-4, λ=7.43 W·m-1·K-1, α=18.7×10-6/K, 在微波通信领域具有良好的应用前景。
Abstract
In response to the urgent demand for high performance microwave composite substrates for high power devices, high density packaging and other microwave communication fields, a new technique combining twin-screw pelletizing and hot press molding is proposed to prepare high thermal conductivity microwave composite substrates with high anti-impact polystyrene (HIPS) as the matrix and hexagonal boron nitride (h-BN) ceramics as the filler. The microstructure, microwave dielectric properties and thermal properties of the substrates are fully characterized. The results show that the use of h-BN25 with a large particle size of 25 μm is more beneficial than h-BN5 with a small particle size of 5 μm in improving the thermal conductivity λ and reducing the dielectric loss tan δ. As the filling ratio w of h-BN25 increases from 0 to 70%, the thermal conductivity of the HIPS/ h-BN25 microwave composite substrate increases from 0.13 W·m-1·K-1 to 7.43 W·m-1·K-1(in-plane) and 2.55 W·m-1·K-1 (inter-plane), which are 57 and 20 times higher than that of-pure HIPS, respectively, indicating that the above-mentioned preparation technique can realize the directional arrangement of h-BN in the HIPS matrix and build an effective in-plane thermal conductivity network. Meanwhile, the dielectric loss tan δ of the composite substrate is reduced from 7.3×10-4 to 5.3×10-4 (10 GHz), the coefficient of thermal expansion α is reduced from 93.8×10-6/K to 18.7×10-6/K. The HIPS/ h-BN25 microwave composite substrate filled with 70% of h-BN25 ceramic has excellent comprehensive performance, the thermal conductivity λ=7.43 W·m-1·K-1, dielectric constant εr=3.9, dielectric loss tan δ=5.3×10-4 and the coefficient of thermal expansion α=18.7×10-6/K at 10 GHz, which exhibits good application prospects in the field of microwave communication.
参考文献

[1] WANG B,LI G,XU L,et al.Nanoporous boron nitride aerogel film and its smart composite with phase change materials[J].ACS Nano,2020,14(12):16590-16599.

[2] LI W,WANG F,CHENG W,et al.Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device[J].Energy Conversion and Management,2020,210:112680.

[3] AN D,CHENG S,JIANG C,et al.A novel environmentally friendly boron ntride/lignosulfonate/natural rubber composite with improved thermal conductivity[J].Journal of Materials Chemistry C,2020,8(14):4801-4809.

[4] ALAM A,ZHANG Y,KUAN H C,et al.Polymer composite hydrogels containing carbon nanomaterials—Morphology and mechanical and functional performance[J].Progress in Polymer Science,2018,77:1-18.

[5] YANG X,LIANG C,MA T,et al.A review on thermally conductive polymeric composites:classification,measurement,model and equations,mechanism and fabrication methods[J].Advanced Composites and Hybrid Materials,2018,1(2):207-230.

[6] MENG X,YU H,WANG L,et al.Recent progress on fabrication and performance of polymer composites with highly thermal conductivity[J].Macromolecular Materials and Engineering,2021,306(11):2100434.

[7] GU J,LIANG C,ZHAO X,et al.Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities[J].Composites Science and Technology,2017,139:83-89.

[8] ZHANG F,FENG Y,QIN M,et al.Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J].Advanced Functional Materials,2019,29(25):1901383.

[9] LI A,ZHANG C,ZHANG Y F.Thermal conductivity of graphene-polymer composites:Mechanisms,properties,and applications[J].Polymers,2017,9(9):437.

[10] SOGA K,SAITO T,KAWAGUCHI T,et al.Percolation effect on thermal conductivity of filler-dispersed polymer composites[J].Journal of Thermal Science and Technology,2017,12(1):JTST0013.

[11] ZHANG X,WU K,LIU Y,et al.Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites[J].Composites Science and Technology,2019,175:135-142.

[12] LI B,LIU Y,SUN B,et al.Properties and heat-conduction mechanism of thermally conductive polymer composites[J].J Chem Ind Eng,2009,60(10):2650-2655.

[13] LIANG L,XU P,WANG Y,et al.Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management[J].Chemical Engineering Journal,2020,395:125209.

[14] WANG Z,HOU D,YI J,et al.Enhanced thermal conductivity and retained electrical insulation of epoxy composites filled with Cu@BaTiO3 core-shell particles[J].Materials Letters,2021,305:130840.

[15] WEI Q,NI Y,YANG D,et al.Enhanced thermal conductivity of silicone rubber via synergistic effects of polydopamine modification and silver deposition on boron nitride[J].Composites Communications,2022,30:101082.

[16] GUO H,ZHAO H,NIU H,et al.Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J].ACS Nano,2021,15(4):6917-6928.

[17] XIA J,QIN Y,WEI X,et al.Enhanced thermal conductivity of polymer composite by adding fishbone-like silicon carbide[J].Nanomaterials,2021,11(11):2891.

[18] 王世民, 温变英.模压导致硼二酸/柠檬酸复合材料的导热与散热效果[J].复合材料学报,2021,39:1-11.

[19] YANG R,SHENG M,ZHANG Y,et al.Thermal and dielectric properties of epoxy-based composites filled with flake and whisker type hexagonal boron nitride materials[J].High Performance Polymers,2021,33(4):417-428.

[20] CHEN Q,WU W,WANG Y,et al.Polyurethane-templated 3D BN network for enhanced thermally conductive property of epoxy composites[J].Polymer,2021,235:124239.

[21] FU K,YANG J,CAO C,et al.Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites[J].ACS Applied Materials & Interfaces,2021,13(2):2853-2867.

田星宇, 彭海益, 王晓龙, 方振, 庞利霞, 姚晓刚, 林慧兴. 聚苯乙烯/六方氮化硼微波复合基板的制备与性能研究[J]. 压电与声光, 2022, 44(4): 547. TIAN Xingyu, PENG Haiyi, WANG Xiaolong, FANG Zhen, PANG Lixia, YAO Xiaogang, LIN Huixing. Investigation on Preparation and Properties of Polystyrene/Hexagonal Boron Nitride Microwave Composite Substrates[J]. Piezoelectrics & Acoustooptics, 2022, 44(4): 547.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!