光学 精密工程, 2019, 27 (7): 1458, 网络出版: 2019-09-02   

耐高温增量式光电编码器的研制

Development of high-temperature resistant incremental encoder
作者单位
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
为了在高温环境下测量角位移, 研制了一种基于光纤的耐高温增量式光电编码器。针对高温工作环境提出利用耐高温的光纤传输光, 在常温环境中采用FPGA处理增量式编码器的电信号, 并通过USB传输角度信息; 分析光源光束准直度对光电编码器的影响, 提出采用LED凸透镜光纤耦合的方式获得平行光; 最后, 使用自准直平行光管和23面体检测精度, 并对比LED凸透镜耦合方式和直接耦合方式的精度。实验结果表明: 该系统在100 ℃的高温环境下工作正常, 编码器头部外型尺寸为62 mm×42 mm, 分辨力为0.3″, 精度3σ=13.55″; 与LED直接耦合方式相比精度提高了20.8%, 满足高温环境下角位移测量的需求。
Abstract
To measure the angle shift that occurs under high-temperature conditions, a fiber-based high-temperature-resistant incremental encoder was developed in this study. First, a high-temperature-resistant fiber was employed to transfer light under high-temperature conditions. A field programmable gate array was used to process the incremental encoder's electric signal, and a USB was used to transfer the angle in a normal temperature environment. Second, the effect of the collimation degree of a light beam on the performance of the optical encoder was analyzed, and then a light-emitting diode (LED) convex lens fiber couple was developed. Finally, 23 surface polyhedrons and autocollimations were used to test the accuracy, and the accuracies of the LED convex lens fiber couple and fiber direct couple were compared. The results show that this system can work normally in 100 ℃ conditions. The size of the encoder head is 62 mm× 42 mm, the resolution is 0.3", and the precision 3σ is 13.55 ″, which represent an improvement of 20.8% over that of the fiber direct couple. The system thus satisfies high-temperature conditions.
参考文献

[1] 叶盛祥.光电位移精密测量技术[M].成都: 四川科学技术出版社, 2003.

    YE SH X. Accurate Measurement about Photoelectric Shift[M]. Chengdu: Science and Technology Press, 2003. (in Chinese)

[2] 韩旭东, 徐新行, 刘长顺, 等. 用于星载激光通信终端的绝对式光电角度编码器[J]. 光学 精密工程, 2016, 24(10): 2424-2431.

    HAN X D, XU X H, LIU CH SH, et al.. Absolute optical angle encoder used for laser communication terminal on satellite platform[J]. Opt. Precision Eng., 2016, 24(10): 2424-2431. (in Chinese)

[3] 刘长顺, 王显军, 韩旭东, 等. 八矩阵超小型绝对式光电编码器[J]. 光学 精密工程, 2010, 18(2): 326-333.

    LIU CH SH, WANG X J, HAN X D, et al.. Ultra miniature absolute optical encoders based on eight-matrix coding[J]. Opt. Precision Eng., 2010, 18(2): 326-333. (in Chinese)

[4] 杨守旺, 梁立辉, 王树洁. 高速高可靠性光电轴角编码器设计[J]. 电子测量技术, 2014, 37(9): 113-116.

    YANG SH W, LIANG L H, WANG S J. Photoelectrical encoder IP core design[J]. Electronic Measurement Technology, 2014, 37(9): 113-116. (in Chinese)

[5] 孙莹, 万秋华, 王树洁, 等. 航天级光电编码器的信号处理系统设计[J]. 光学 精密工程, 2010, 18(5): 1182-1188.

    SUN Y, WAN Q H, WANG S J, et al.. Design of signal process system for spaceborne photoelectric encoder[J]. Opt. Precision Eng., 2010, 18(5): 1182-1188. (in Chinese)

[6] 赵长海, 万秋华, 梁立辉, 等. 小型高精度航天级光电编码器[J]. 电子测量与仪器学报, 2015, 29(8): 1224-1230.

    ZHAO CH H, WAN Q H, LIANG L H, et al.. The small high-precision spaceborne photoelectric encoder[J]. Journal of Electronic Measurement and Instrument, 2015, 29(8): 1224-1230. (in Chinese)

[7] 朱孝立, 陈军宁. 光电编码器LED光源的准直[J]. 光学 精密工程, 2009, 17(4): 750-756.

    ZHU X L, CHEN J N. Beam collimation of LED in optical encoder[J]. Opt. Precision Eng., 2009, 17(4): 750-756. (in Chinese)

[8] 卢新然, 宋路, 万秋华. 红外光源参数对光电编码器信号的影响[J]. 红外与激光工程, 2017, 46(9): 232-237.

    LU X R, SONG L, WAN Q H. Effect of infrared light source parameters on photoelectric encoder[J]. Infrared and Laser Engineering, 2017, 46(9): 232-237. (in Chinese)

[9] 杜颖财, 王希军, 王树洁, 等. 增量式编码器自动检测系统[J]. 电子测量与仪器学报, 2012, 26(11): 993-998.

    DU Y C, WANG X J, WANG SH J, et al.. Auto-detection system of incremental encoder[J]. Journal of Electronic Measurement and Instrument, 2012, 26(11): 993-998. (in Chinese)

[10] 赖丽萍, 王文法, 庄其仁. LED菲涅耳透镜光纤束耦合器设计[J]. 激光与光电子学进展, 2018, 55(2): 022201.

    LAI L P, WANG W F, ZHUANG Q R. Design of LED Fresnel lens fiber bundle coupler[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022201. (in Chinese)

[11] 张晓婷, 刘楚嘉, 漆宇, 等. 基于LED光源与聚合物光纤束的能量均匀透镜耦合器设计[J]. 光学学报, 2018, 38(2): 94-102.

    ZHANG X T, LIU CH J, QI Y, et al.. Design of lens coupler with uniform energy distribution based on LED source and polymer optical fiber bundle[J]. Acta Optica Sinica, 2018, 38(2): 94-102. (in Chinese)

[12] 王子仪, 张荣君, 徐蔚, 等. 基于全反射的发光二极管-照明光纤耦合器的设计与研制[J]. 光学学报, 2012, 32(9): 265-269.

    WANG Z Y, ZHANG R J, XU W, et al.. A light emitting diode-lighting fiber coupler based on total reflection[J]. Acta Optica Sinica, 2012, 32(9): 265-269. (in Chinese)

韩庆阳, 陈赟, 张红胜, 高胜英, 张晰. 耐高温增量式光电编码器的研制[J]. 光学 精密工程, 2019, 27(7): 1458. HAN Qing-yang, CHEN Yun, ZHANG Hong-sheng, GAO Sheng-ying, ZHANG Xi. Development of high-temperature resistant incremental encoder[J]. Optics and Precision Engineering, 2019, 27(7): 1458.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!