人工晶体学报, 2023, 52 (1): 105, 网络出版: 2023-03-18  

超硬B-C-N材料的电子结构、硬度和光学性质的第一性原理计算

First-Principles Calculations on Electronic Structures, Hardness and Optical Properties of Superhard B-C-N Compounds
作者单位
1 滇西科技师范学院数理学院,临沧 677000
2 西南大学材料与能源学院,重庆 400715
摘要
本文基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法计算了z-BC2N和z-B2CN的4种晶体结构的电子结构、硬度和光学性质。结果表明,z-BC2N(2)为直接带隙半导体,其禁带宽度2.449 eV,z-BC2N(1)为间接宽带隙半导体,其禁带宽度为3.381 eV,而z-B2CN(1)和z-B2CN(2)为导体;硬度结果显示z-BC2N(1)、z-BC2N(2)和z-B2CN(1)为超硬材料。最后通过计算z-BC2N基本光学函数与光子能量的关系表征了其光学性质。分析结果表明,z-BC2N结构可以用作良好的耐磨材料和窗口耐热材料。
Abstract
Electronic structure, hardness and optical properties of four crystal structures of z-BC2N and z-B2CN were studied in this paper by first-principles calculations of plane wave ultra-soft pseudo-potential method based on the density functional theory (DFT). Deep analysis of electronic structure was carried out, indicating that z-BC2N(1) and z-BC2N(2) are indirect and direct wide band gap semiconductor, and band gap are 3.381 eV and 2.449 eV respectively, but z-B2CN(1) and z-B2CN(2) are conductors. Furthermore z-BC2N(1), z-BC2N(2) and z-B2CN(1) are superhard materials. Finally, the optical properties of z-BC2N(1) and z-BC2N(2) were analyzed by calculating the relationship between the basic optical function and photon energy of z-BC2N. Those data indicate that z-BC2N structures can be served as wear-resistant materials and high-temperature-resistant materials that used by control windows.
参考文献

[1] CHANG J, NULL Y C, FU M. First-principles calculations of thermodynamic properties of superhard orthorhombic β-BC2N[J]. Journal of Atomic and Molecular Sciences, 2022, 1(3): 243-252.

[2] WENTORF R H. Cubic form of boron nitride[J]. The Journal of Chemical Physics, 1957, 26(4): 956.

[3] ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks[J]. Journal of Materials Research, 2002, 17(12): 3139-3145.

[4] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10): 1385-1387.

[5] SUN H, JHI S H, ROUNDY D, et al. Structural forms of cubic BC2N[J]. Physical Review B, 2001, 64(9): 094108.

[6] ZHANG Y, SUN H, CHEN C F. Superhard cubic BC2N compared to diamond[J]. Physical Review Letters, 2004, 93(19): 195504.

[7] GUO X J, LIU Z Y, LUO X G, et al. Theoretical hardness of the cubic BC2N[J]. Diamond and Related Materials, 2007, 16(3): 526-530.

[8] LI Q, ZHOU D, WANG H, et al. Crystal and electronic structures of superhard B2CN: an ab initio study[J]. Solid State Communications, 2012, 152(2): 71-75.

[9] NAKANO S, AKAISHI M, SASAKI T, et al. Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa[J]. Chemistry of Materials, 1994, 6(12): 2246-2251.

[10] ZHOU X F, SUN J, FAN Y X, et al. Most likely phase of superhard BC2N by ab initio calculations[J]. Physical Review B, 2007, 76(10): 100101.

[11] 王军朋,李 凤,敖 靖,等.新型超硬材料z-BC2N的弹性、硬度与热导率研究[J].无机材料学报,2015,30(5):467-473.

[12] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.

[13] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.

[14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[15] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, Condensed Matter, 1990, 41(11): 7892-7895.

[16] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

[17] BROYDEN C G. The convergence of a class of double-rank minimization algorithms 1. general considerations[J]. IMA Journal of Applied Mathematics, 1970, 6(1): 76-90.

[18] FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322.

[19] GOLDFARB D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computation, 1970, 24(109): 23-26.

[20] SHANNO D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.

[21] SUN J, ZHOU X F, QIAN G R, et al. Chalcopyrite polymorph for superhard BC2N[J]. Applied Physics Letters, 2006, 89(15): 151911.

[22] 陈志谦,李春梅,王 瑨,等.几种BC2N超硬材料力学性能与电子结构的理论研究[J].中国科学:物理学 力学 天文学,2013,43(2):142-151.

[23] CORKILL J L, COHEN M L. Calculated quasiparticle band gap of β-C3N4[J]. Physical Review B, 1993, 48(23): 17622-17624.

[24] 陈志谦,李春梅,李冠男,等.材料的设计、模拟与计算: CASTEP的原理及其应用[M].北京:科学出版社,2019.

[25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504.

[26] CHUNG D H, BUESSEM W R. The elastic anisotropy of crystals[J]. Journal of Applied Physics, 1967, 38(5): 2010-2012.

[27] CHEN Z Q, PENG Y S, HU M, et al. Elasticity, hardness, and thermal properties of ZrBn(n=1, 2, 12)[J]. Ceramics International, 2016, 42(6): 6624-6631.

[28] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106.

[29] GUO X J, LI L, LIU Z Y, et al. Hardness of covalent compounds: roles of metallic component and d valence electrons[J]. Journal of Applied Physics, 2008, 104(2): 023503.

[30] 张旭昀,张正江,孙丽丽,等.超硬B-C-N化合物晶体和电子结构的第一性原理研究[J].人工晶体学报,2013,42(6):1181-1186.

[31] 潘 磊,卢铁城,苏 锐,等.γ-AlON晶体电子结构和光学性质研究[J].物理学报,2012,61(2):027101.

杨丕华, 陈佳, 傅永平, 陈志谦. 超硬B-C-N材料的电子结构、硬度和光学性质的第一性原理计算[J]. 人工晶体学报, 2023, 52(1): 105. YANG Pihua, CHEN Jia, FU Yongping, CHEN Zhiqian. First-Principles Calculations on Electronic Structures, Hardness and Optical Properties of Superhard B-C-N Compounds[J]. Journal of Synthetic Crystals, 2023, 52(1): 105.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!