硅酸盐通报, 2023, 42 (9): 3176, 网络出版: 2023-11-03  

石灰石制备食品级球霰石碳酸钙微球及其机理研究

Preparation and Mechanism of Food-Grade Vaterite Calcium Carbonate by Limestone
作者单位
贵州大学化学与化工学院,贵阳 550025
摘要
以石灰石为原料,利用HNO3酸解和Ca(OH)2沉淀除杂精制得到Ca(NO3)2溶液,在氨氛围下采用CO2碳化法制备食品级球霰石型碳酸钙。探讨了碳化工艺参数对碳酸钙晶型调控的影响,并利用扫描电子显微镜、X射线衍射仪以及傅里叶变换红外光谱仪对产物进行表征,提出了NH+4和NH2COO-共同作用调控球霰石晶型生成的机理。结果表明,氨氛围有助于球霰石的稳定成核。当NH3·H2O浓度为13%(质量分数)、CO2流量为05 L/min、反应温度为25 ℃、反应时间为25 min时,制得2~5 μm的单一相球霰石碳酸钙微球,产物的纯度达到995%(质量分数),质量符合《食品安全国家标准 食品添加剂 碳酸钙》要求。本研究可为石灰石的高值化利用和亚稳态球霰石型碳酸钙的制备提供理论基础。
Abstract
Limestone was used as raw materials, Ca(NO3)2 solution was obtained by HNO3 acid hydrolysis and Ca(OH)2 precipitation purification, and food-grade vaterite calcium carbonate was prepared by CO2 carbonization in the ammonia atmosphere. The effects of carbonization process parameters on the regulation of calcium carbonate crystal form were discussed, and the products were characterized by scanning electron microscopy, X-ray powder diffractometer and Fourier transform infrared spectroscopy. The mechanism of NH+4 and NH2COO- co-regulating the formation of vaterite crystal form was proposed. The results show that the ammonia atmosphere is helpful to the stable nucleation of vaterite-type calcium carbonate. When the concentration of NH3·H2O is 13% (mass fraction), the flow rate of CO2 is 0.5 L/min, the reaction temperature is 25 ℃, and the reaction time is 25 min, the single phase vaterite calcium carbonate microspheres of 2~5 μm are prepared. The purity of the product is 99.5% (mass fraction), and the quality meets the requirements of food safety national standard food additive calcium carbonate. The research provides a theoretical basis for the high-value utilization of limestone and the preparation of metastable vaterite calcium carbonate.
参考文献

[1] LONGKAEW K, TESSANAN W, DANIEL P, et al. Using sucrose to prepare submicrometric CaCO3 vaterite particles stable in natural rubber[J]. Advanced Powder Technology, 2023, 34(1): 103924.

[2] WANG D, KIM J, PARK C B. Lignin-induced CaCO3 vaterite structure for biocatalytic artificial photosynthesis[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58522-58531.

[3] WESTIN K J, RASMUSON  C. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid[J]. Journal of Colloid and Interface Science, 2005, 282(2): 359-369.

[4] LUNDIN JOHNSON M, NORELAND D, GANE P, et al. Porous calcium carbonate as a carrier material to increase the dissolution rate of poorly soluble flavouring compounds[J]. Food & Function, 2017, 8(4): 1627-1640.

[5] 饶超辉. 无定形碳酸钙复合纳米颗粒的制备及其在药物缓释、食品保鲜中的应用研究[D]. 太原: 太原理工大学, 2020.

[6] CHOE H, LEE J H, KIM J H. Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties[J]. Composites Science and Technology, 2020, 194: 108153.

[7] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品添加剂 碳酸钙: GB 1886.214—2016[S]. 北京: 中国标准出版社, 2017.

[8] 王 芬, 余军霞, 肖春桥, 等. CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报, 2017, 36(1): 43-50+56.

[9] YAN S, LI Y, CAO J L. Controllable synthesis of highly-dispersed and spherical calcite mesocrystals from Ca(NO3)2 waste via precipitation method[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106716.

[10] YANG C L, YANG X Q, ZHAO T X, et al. An indirect CO2 utilization for the crystallization control of CaCO3 using alkylcarbonate[J]. Journal of CO2 Utilization, 2021, 45: 101448.

[11] 张 晶. 球霰石型碳酸钙微纳米材料的DMF/H2O溶剂热合成[D]. 武汉: 武汉理工大学, 2015.

[12] SONG X W, LIU H, WANG J F, et al. A study of the effects of NH+4 on the fast precipitation of vaterite CaCO3 formed from steamed ammonia liquid waste and K2CO3/Na2CO3[J]. CrystEngComm, 2021, 23(24): 4284-4300.

[13] 王 超, 杨保俊, 周金刚, 等. 由电石渣制备高分散纳米碳酸钙[J]. 化工进展, 2017, 36(增刊1): 346-352.

[14] LUO J, KONG F T, MA X S. Role of aspartic acid in the synthesis of spherical vaterite by the Ca(OH)2-CO2 reaction[J]. Crystal Growth & Design, 2016, 16(2): 728-736.

[15] 赵 历. CO2气泡模板法制备球霰石型碳酸钙微球及其药物缓释性能[D]. 南宁: 广西大学, 2014.

[16] SONG X W, HUA X R, YANG R H, et al. Synergetic effects of initial NH+4 and Ca2+ concentration on the formation vaterite using steamed ammonia liquid waste as a direct carbonation[J]. Powder Technology, 2023, 419: 118363.

[17] MANI F, PERUZZINI M, STOPPIONI P. CO2 absorption by aqueous NH3 solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study[J]. Green Chemistry, 2006, 8(11): 995-1000.

[18] 张文秀, 丁文中. 金属离子氢氧化物沉淀完全时的pH值[J]. 杭州教育学院学报, 1993(2): 39-41.

[19] RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2011, 3(1): 265-271.

[20] YANG T Y, FU J, MA L, et al. Biomimetic synthesis of calcium carbonate under phenylalanine: control of polymorph and morphology[J]. Materials Science and Engineering: C, 2020, 114: 111019.

[21] WANG Y S, MOO Y X, CHEN C P, et al. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres[J]. Journal of Colloid and Interface Science, 2010, 352(2): 393-400.

[22] LI C M, BOTSARIS G D, KAPLAN D L. Selective in vitro effect of peptides on calcium carbonate crystallization[J]. Crystal Growth & Design, 2002, 2(5): 387-393.

[23] 薛 潇, 宫 源, 朱家骅, 等. 乙二胺对CaSO4·2H2O-NH3-CO2-H2O反应体系制备球霰石络合作用的研究[J]. 高校化学工程学报, 2018, 32(4): 902-909.

蒙梅, 谢燕, 鲁镜镜, 冯伦伟, 刘艳. 石灰石制备食品级球霰石碳酸钙微球及其机理研究[J]. 硅酸盐通报, 2023, 42(9): 3176. MENG Mei, XIE Yan, LU Jingjing, FENG Lunwei, LIU Yan. Preparation and Mechanism of Food-Grade Vaterite Calcium Carbonate by Limestone[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3176.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!