人工晶体学报, 2023, 52 (9): 1624, 网络出版: 2023-10-07  

1 060 nm锑化物应变补偿有源区激光二极管仿真及其性能研究

Simulation and Performance of 1 060 nm Antimonide Strain-Compensated Active Laser Diode
作者单位
1 太原理工大学新材料界面科学与工程教育部重点实验室, 太原 030024
2 山西浙大新材料与化工研究院, 太原 030024
3 太原理工大学材料科学与工程学院, 太原 030024
4 陕西科技大学材料原子·分子科学研究所, 西安 710021)
摘要
本文设计了GaAs基1 060 nm高性能激光二极管的有源区结构, 通过在有源区中引入锑化物的应变补偿结构GaAsP/InGaAs/GaAsSb/InGaAsSb/GaAsP, 改变了有源区的能带结构, 解决了禁带宽度对发光波长的限制, 将弱Ⅱ型的量子阱能带结构变为Ⅰ型, 增大了电子空穴的波函数重叠, 提高了激光二极管跃迁概率和辐射复合概率及内量子效率, 降低了非辐射复合, 有效增强了器件输出功率和电光转换效率。同时, 设计了非对称异质双窄波导结构, p侧采用导带差大、价带差小的AlGaAs作为内、外波导层, 有利于价带空穴注入有源区且对导带中的电子形成良好的限制。n侧采用导带差小、价带差大的GaInAsP作为内、外波导层, 有利于导带电子的注入且对价带中的空穴形成更高的势垒。电子注入势垒和空穴注入势垒分别由原先的218、172 meV降低到148、155 meV, 提高了激光二极管的载流子注入效率; 电子泄漏势垒和空穴泄漏势垒分别由252、287 meV上升到289、310 meV, 增强了载流子限制能力。最后获得的激光二极管的输出功率和电光转换效率分别达到了6.27 W和85.39%, 为制备高性能GaAs基1 060 nm激光二极管提供了理论指导和数据支撑。
Abstract
In this paper, an active region structure of GaAs-based 1 060 nm high performance laser diode was designed. An strain compensation structure of antimonide GaAsP/InGaAs/GaAsSb/InGaAsSb/GaAsP was introduced into the active region, which alter the energy band structure of active region and solve the limitation of bandgap width on emission wavelength. The weak type Ⅱ quantum well band structure is transformed into type Ⅰ, and the overlap of the electron and hole wave functions increase. The transition probability, radiation recombination probability and internal quantum efficiency are improved, and the non-radiative recombination is reduced. Therefore, output power and electro-optical conversion efficiency of the device are effectively enhanced. Additionally, an asymmetric hetero-double narrow waveguide structure was designed. The p-side of the structure used AlGaAs with large conduction band offset and small valence band offset as the inner and outer waveguide layers, which is beneficial for valence band holes injecting into the active region and restricted electrons in the conduction band. The n-side of the structure used GaInAsP with small conduction band offset and large valence band offset as the inner and outer waveguide layers, which is beneficial for conduction band electrons injecting into the active region and forming a higher potential barrier for holes in the valence band. The electrons injection barrier and holes injection barrier are reduced from 218 and 172 meV to 148 and 155 meV, respectively, which improve the carrier injection efficiency. The electron leakage barrier and hole leakage barrier are increased from 252 and 287 meV to 289 and 310 meV, respectively, which enhance carrier confined ability. Finally, output power and electro-optical conversion efficiency of laser diode reach 6.27 W and 85.39%, respectively. The results provide theoretical guidance and data support for achieving high-performance GaAs-based 1 060 nm laser diode.
参考文献

[1] LIU X S, HU M H, CANEAU C G, et al. Thermal management strategies for high power semiconductor pump lasers[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(2): 268-276.

[2] DAVID A, YOUNG N G, HURNI C A, et al. Quantum efficiency of Ⅲ-nitride emitters: evidence for defect-assisted nonradiative recombination and its effect on the green gap[J]. Physical Review Applied, 2019, 11(3): 031001.

[3] TOMM J W, ZIEGLER M, HEMPEL M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser & Photonics Reviews, 2011, 5(3): 422-441.

[4] 杜瀚洋. GaSb基量子阱激光器材料的结构设计与特性表征[D]. 长春: 长春理工大学, 2008.

[5] 柳建杰. InGaN量子点的制备及应变调控[D]. 太原: 太原理工大学, 2018.

[6] LI H, WOLF P, MOSER P, et al. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2014, 50(8): 613-621.

[7] QIAO Z L, LI X A, WANG H, et al. High-performance 1.06-μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers[J]. Semiconductor Science and Technology, 2019, 34(5): 055013.

[8] MALG A, DBROWSKA E, GRODECKI K. Temperature sensitivity (T0) of tensile-strained GaAsP/(AlGa)As double-barrier separate confinement heterostructure laser diodes for 800 nm band[J]. Journal of Applied Physics, 2008, 103(11): 113109.

[9] 孙俊华, 王泉涌. 基于空穴子带合并效应的红外半导体激光器[J]. 激光技术, 2012, 36(6): 663-666.

[10] 张敬明, 徐俊英, 肖建伟, 等. GaAlAs/GaAs多量子阱激光器结构设计[J]. 半导体学报, 1992, 13(8): 463-468.

[11] LIU H Y, XU B, WEI Y Q, et al. High-power and long-lifetime InAs/GaAs quantum-dot laser at 1080 nm[J]. Applied Physics Letters, 2001, 79(18): 2868-2870.

[12] 王新强, 杜国同, 殷景志, 等. InAsP/InGaP应变补偿量子阱的研究进展[J]. 光电子·激光, 2000, 11(2): 212-215.

[13] LEVY M, BERK Y, KARNI Y. Effect of compressive and tensile strain on the performance of 808-nm QW high power laser diodes[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6104, High-Power Diode Laser Technology and Applications Ⅳ, San Jose, California, USA. 2006, 6104: 93-104.

[14] PARK S H. Electronic properties of strain-compensated GaAsSb/GaAs/GaAsP quantum well structures[J]. New Physics: Sae Mulli, 2011, 61(8): 744-749.

[15] ZHENG X H, JIANG D S, JOHNSON S, et al. Structural and optical properties of strain-compensated GaAsSb/GaAs quantum wells with high Sb composition[J]. Applied Physics Letters, 2003, 83(20): 4149-4151.

[16] JIANG D S, BIAN L F, LIANG X G, et al. Structural and optical properties of GaAsSb/GaAs heterostructure quantum wells[J]. Journal of Crystal Growth, 2004, 268(3/4): 336-341.

[17] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a GaAsSb/GaAs/GaAsP strain-compensated quantum well structure grown by metal-organic vapor phase epitaxy[J]. Journal of Crystal Growth, 2013, 370: 182-185.

[18] HUANG C T, WU J D, LIU C F, et al. Optical characterization of a strain-compensated GaAs0.64Sb0.36/GaAs0.79P0.21 quantum well structure grown by metal organic vapor phase epitaxy[J]. Materials Chemistry and Physics, 2012, 134(2/3): 797-802.

[19] LI T, HAO E, ZHANG Y. High power, 1060-nm diode laser with an asymmetric hetero-waveguide[J]. Quantum Electronics, 2015, 45(7): 607-609.

[20] 安 宁, 刘国军, 刘 超, 等. 2 μm InGaAsSb/AlGaAsSb应变补偿量子阱结构的数值研究[J]. 半导体光电, 2015, 36(2): 205-208+212.

[21] 李 特, 郝二娟, 张 月. 非对称异质波导半导体激光器结构[J]. 红外与毫米波学报, 2015, 34(5): 613-618.

[22] 贾甜甜. GaN基绿光激光二极管外延结构设计及其光电性能研究[D]. 太原: 太原理工大学, 2021.

[23] HALLMAN L W, RYVKIN B S, AVRUTIN E A, et al. High power-m pulsed laser diode with asymmetric waveguide and active layer near p-cladding[J]. IEEE Photonics Technology Letters, 2019, 31(20): 1635-1638.

[24] MALAG A, DABROWSKA E, TEODORCZYK M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 465-471.

[25] BUDA M, HAY J, TAN H H, et al. Low loss, thin p-clad 980-nm InGaAs semiconductor laser diodes with an asymmetric structure design[J]. IEEE Journal of Quantum Electronics, 2003, 39(5): 625-633.

[26] 林 琳, 陈宏泰, 徐会武, 等. 976 nm非对称波导结构高效率半导体激光器[J]. 微纳电子技术, 2013, 50(5): 281-285+297.

[27] 李丽娜, 吴金辉, 宋俊峰. 大功率半导体激光器远场特性研究[J]. 发光学报, 2004, 25(1): 95-97+111.

[28] CHEN B L, JIANG W Y, HOLMES A L Jr. Design of strain compensated InGaAs/GaAsSb type-Ⅱ quantum well structures for mid-infrared photodiodes[J]. Optical and Quantum Electronics, 2012, 44(3): 103-109.

[29] SUKHOIVANOV I A, MASHOSHYNA O V, KONONENKO V K, et al. How to restrain Auger recombination predominance in the threshold of asymmetric bi-quantum-well lasers[J]. Microelectronics Journal, 2005, 36(3/4/5/6): 264-268.

[30] GALLER B, LUGAUER H J, BINDER M, et al. Experimental determination of the dominant type of auger recombination in InGaN quantum wells[J]. Applied Physics Express, 2013, 6(11): 112101.

[31] MEYER J R, HOFFMAN C A, BARTOLI F J, et al. Type-Ⅱ quantum-well lasers for the mid-wavelength infrared[J]. Applied Physics Letters, 1995, 67(6): 757-759.

[32] YUAN Q H, JING H Q, ZHONG L, et al. High performance 9xx nm high power semiconductor laser[J]. Chinese Journal of Luminescence, 2020, 41(2): 194-198.

[33] WU S H, LI T, WANG Z F, et al. Study of temperature effects on the design of active region for 808 nm high-power semiconductor laser[J]. Crystals, 2023, 13(1): 85.

[34] BONORA S, PILAR J, LUCIANETTI A, et al. Design of deformable mirrors for high power lasers[J]. High Power Laser Science and Engineering, 2016, 4: e16.

[35] RUIZ M, ODRIOZOLA H, KWOK C H, et al. High-brightness tapered lasers with an Al-free active region at 1060 nm[C]//SPIE OPTO: Integrated Optoelectronic Devices. Proc SPIE 7230, Novel in-Plane Semiconductor Lasers Ⅷ, San Jose, California, USA. 2009, 7230: 267-274.

[36] CAI J, KANSKAR M. 67% CW power conversion efficiency from Al-free 1 060 nm emitting diode lasers[J]. Electronics Letters, 2009, 45(13): 680.

[37] GORAI A, PANDA S, BISWAS D. Advantages of InGaN/InGaN quantum well light emitting diodes: better electron-hole overlap and stable output[J]. Optik, 2017, 140: 665-672.

[38] TANSU N, MAWST L J. Design analysis of 1550-nm GaAsSb-(In)GaAsN type-Ⅱ quantum-well laser active regions[J]. IEEE Journal of Quantum Electronics, 2003, 39(10): 1205-1210.

[39] MOTYKA M, RYCZKO K, SK G, et al. Type Ⅱ quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7): 1107-1111.

[40] 谭少阳, 王 皓, 张瑞康, 等. 大功率高光束质量1060 nm大光腔非对称波导半导体激光二极管[J]. 光学学报, 2015, 35(增刊): 238-242.

[41] 张永棠. 一种高效率的1060 nm半导体激光器设计[J]. 电子器件, 2018, 41(6): 1357-1361.

[42] 孙 可, 王健华, 彭吉虎. InGaAs/InGaAlAs应变补偿量子阱激光器及其温度特性研究[J]. 高技术通讯, 2000, 10(2): 50-52.

[43] RYVKIN B S, AVRUTIN E A, KOSTAMOVAARA J T. Asymmetric-waveguide, short cavity designs with a bulk active layer for high pulsed power eye-safe spectral range laser diodes[J]. Semiconductor Science and Technology, 2020, 35(8): 085008.

[44] SUKHOIVANOV I A, MASHOSHINA O V, KONONENKO V K, et al. Temperature dependence of the threshold and auger recombination in asymmetric quantum-well heterolasers[C]//5th International Workshop on Laser and Fiber-Optical Networks Modeling, 2003. Proceedings of LFNM. September 19-20, 2003, Alushta, Ukraine. IEEE, 2003: 255-258.

[45] WANG H L, ZHONG L, HOU J D, et al. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005.

[46] LIN X, DAI X L, YE Z K, et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots[J]. Nano Research, 2022, 15(10): 9402-9409.

梁财安, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 1 060 nm锑化物应变补偿有源区激光二极管仿真及其性能研究[J]. 人工晶体学报, 2023, 52(9): 1624. LIANG Caian, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Simulation and Performance of 1 060 nm Antimonide Strain-Compensated Active Laser Diode[J]. Journal of Synthetic Crystals, 2023, 52(9): 1624.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!