激光技术, 2022, 46 (5): 601, 网络出版: 2022-10-14   

单光子探测器的研究进展

Research progress of single-photon detectors
作者单位
1 西南技术物理研究所, 成都 610041
2 电子科技大学 基础与前沿研究院, 成都 610054
摘要
单光子探测器能够探测极微弱光信号, 具有较高的灵敏度, 在民用和**领域都有广泛的应用。近年来, 随着科学技术的飞速发展, 在传统光电探测器件不断优化和改进的同时, 其它新型光电探测器件也得到了极大发展且取得了重要技术成果。为深入了解单光子探测器的技术发展现状和趋势, 总结了目前具有代表性的单光子探测器在研究现状、技术难点和最新技术突破等方面的关键信息, 分析了光电倍增管和雪崩光电二极管等传统单光子探测器的优势与不足以及之后的技术发展方向, 同时还介绍了超导纳米线单光子探测器和基于新型2维材料的雪崩光电二极管等几类具有良好光电性能和巨大发展潜力的新型单光子探测器, 并对其发展前景进行了展望。
Abstract
Single-photon detector can detect very weak light with high sensitivity, which has been widely used in the field of civil and national defense. With the development of technology, in addition to the optimization and improvement of traditional photodetectors, other new photodetectors have also been greatly developed and important technical achievements have been made. In order to deeply understand the development status and trend of single-photon detectors, the key information in research status, technical difficulties, and latest technological breakthroughs of representative single-photon detectors were summarized. The advantages and disadvantages of traditional single-photon detectors such as photomultiplier tube and avalanche photodiode were analyzed as well as the future technical development direction. At the same time, the superconducting nanowire single-photon detectors and avalanche photodiode based on new 2-D materials with good photoperformance and great development potential were introduced. And the future direction was prospected.
参考文献

[1] HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705.

[2] EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101.

[3] HAMAMATSU.Photonic device electron tube devices and applied products[M]. Hamamatsu, Japan: Hamamatsu Photonics Electron Tube Division, 2014: 3.

[4] NISHIMURA Y. New 50cm photo-detectors for hyper kamiokande[J]. Proceeding of Science, 2017,303: 1596831.

[5] ERTLEY C D, SIEGMUND O, HULL J, et al. Microchannel plate imaging detectors for high dynamic range applications[J]. IEEE Transactions on Nuclear Science, 2017, 64(7): 1774-1780.

[6] LYASHENKO A V, ADAMS B W, AVILES M, et al. Performance of large area picosecond photo-detectors(LAPPDTM)[J].Nuclear Instruments and Methods in Physics Reserach,2020,A958: 162834.

[7] LEHMANN A, BHM M, MIEHLING D, et al. Recent progress with microchannel-plate PMTs[J]. Nuclear Instruments and Methods in Physics Research, 2020, A952: 161821.

[8] ACERBI F, GUNDACKER S. Understanding and simulating SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 16-35.

[9] GHIONI M, GULINATTI A, RECH I, et al. Progress in silicon single-photon avalanche diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 852-862.

[10] ZHANG J, ITZLER M A, ZBINDEN H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light Science & Applications, 2015, 4(1): 381-393.

[11] GHIONI M, ARMELLINI G, MAcCAGNANI P, et al. Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates[J]. IEEE Photonics Technology Letters, 2008, 20(6): 413-415.

[12] MA J, ZHOU M, YU Z F, et al. High-efficiency and low-jitter silicon single-photon avalanche diodes based on nanophotonic absorption enhancement[J]. Optica, 2015,2(11): 974-979.

[13] ZANG K, JIANG X, HUO Y. et al. Silicon single-photon avalanche diodes with nano-structured light trapping[J]. Nature Communications, 2017,8(1): 58-61.

[14] WARBURTON R E, INTERMITE G, MYRONOV M, et al. Ge-on-Si single-photon avalanche diode detectors: Design, modeling, fa-brication, and characterization at wavelengths 1310 and 1550nm[J]. IEEE Transactions on Electron Devices, 2013, 60(11): 3807-3813.

[15] MARTINE N J D, GEHL M, DEROSE C T, et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode[J]. Optics Express, 2017, 25(14): 16130-16139.

[16] VINES P, KUZMENKO K, KIRDODA J, et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors[J]. Nature Communications, 2019, 10(1): 012002.

[17] DUMAS D C, MILLAR R, KIRDODA J, et al. High-efficiency Ge-on-Si SPADs for short-wave infrared[C]// Optical Components and Materials ⅩⅥ. San Francisco, USA: SPIE, 2019: 1091424.

[18] PENG B, ZHANG Y H, SHEN W Z. Infrared single photon detector based on optical up-converter at 1550nm[J]. Scientific Report, 2017, 7(1): 15341.

[19] WIDARSSON M, HENRIKSSON M, MUTTER P, et al. High resolution and sensitivity up-conversion mid-infrared photon counting LiDAR[J]. Applied Optics, 2020, 59(8): 2365-2369.

[20] ITZLER M A, JIANG X D, ENTWISTLE M,et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics,2011, 58(3/4): 174-200.

[21] MENG X, TAN C H, DIMLER S, et al. 1550nm InGaAs/InAlAs single photon avalanche diode at room temperature[J]. Optics Express, 2014, 22(19): 174-200.

[22] XIE S, ZHANG S, TAN C H. InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1745-1748.

[23] SEO H S, PARK S H, KWAK S, et al. A model for the InGaAs/InP single photon avalanche diodes with multiple-quantum wells in the charge multiplication region[J]. Journal of the Korean Physical Society, 2018, 72(2): 289-293.

[24] FANG Y Q, CHEN W, AO T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550nm[J]. Review of Scientific Instruments, 2020, 91(8): 083102.

[25] SONG H Z. Avalanche photodiode focal plane arrays and their application in laser detection and ranging[J/OL].[2018-11-05]. http: //www.researchgate.net/publication/330-938883_Avalanche_ photodiode_ Focal _Plane _Arrays_ and_ Their_ Application_to_Laser_Detection_and_Ranging.

[26] GOLA A, ACERBI F, CAPASSO M, et al. NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler[J]. Sensors, 2019, 19(2): 308.

[27] GUO L H, CHEN P,LI L L. Research progress on key technologies of photomultiplier tubes[J].Vacuum Electronics,2020, 347(4): 1-13(in Chinese).

[28] PIEMONTE C, FERRI A, GOLA A, et al. Characterization of the first FBK high-density cell silicon photomultiplier technology[J]. IEEE Transactions on Electron Devices, 2013, 60(8): 2567-2573.

[29] ACERBI F, PATERNOSTER G, GOLA A, et al. High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range applications[J]. IEEE Journal of Quantum Electronics, 2018,54(2): 4700107.

[30] YOU L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 2020, 9(9): 2673-2692.

[31] ROSFJORD K M, YANG J, DAULER E A, et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating[J]. Optics Express, 2006, 14(2): 527-534.

[32] ZHANG W J, YOU L X, LI H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017,60(12): 31-40.

[33] HU P, LI H, YOU L X, et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express,2020,28(24): 36884-36891.

[34] MIAO J Sh, ZHANG L, WANG Ch, et al. Black phosphorus electronic and optoelectronic devices[J]. 2D Materials, 2019, 6(3): 32003.

[35] LIU Y, HUANG Y, DUAN X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019,567(7748): 323-333.

[36] MIAO J Sh, HU W D, GUO N,et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015,11(8): 936-942.

[37] HUANG M, WANG M, CHEN C, et al. Broadband black-pho-sphorus photodetectors with high responsivity[J]. Advanced Materials, 2016, 28(18): 3481-3485.

[38] MALEKI A, COUTTS D W, DOWNES J E, et al. Graphene photo-detector enhanced by plasmonic coupling[C]//Lasers and Electro-Optics Pacific Rim (CLEO-PR). New York,USA: IEEE,2017: 1-4.

[39] GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic a-valanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019,14(3): 217-222.

[40] LOPEZ-SANCHEZ O, DUMCENCO D, CHARBON E, et al. Avalanche photodiodes based on MoS2/Si heterojunctions[J/OL].[2014-11-12].https: //arxiv.org/abs/1411.3232.

[41] MIAO J Sh, WANG C. Avalanche photodetectors based on two-dimensional layered materials[J].Nano Research,2020,14(6): 1878-1888.

[42] WU P P, FU Y Q,YANG J. Graphene photodetectors based on surface plasmons[J].Laser & Optoelectronics Progress, 2021, 58(7): 0700002(in Chinese).

程碑彤, 代千, 谢修敏, 徐强, 张杉, 宋海智. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601. CHENG Beitong, DAI Qian, XIE Xiumin, XU Qiang, ZHANG Shan, SONG Haizhi. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!