中国激光, 2023, 50 (8): 0802106, 网络出版: 2023-03-28  

GH3230高温合金绿光飞秒激光的刻蚀特性

Ablation Characteristics of GH3230 Superalloy Using Green Femtosecond Laser
作者单位
1 北京工业大学材料与制造学部高功率及超快激光先进制造实验室,北京 100124
2 北京动力机械研究所,北京 100074
摘要
飞秒激光以其超窄脉宽和超高光强等特性被广泛应用于各种金属材料的加工。本课题组采用波长为515 nm的绿光飞秒激光器对GH3230镍基高温合金进行刻蚀试验,研究了GH3230高温合金的绿光飞秒激光刻蚀阈值、刻蚀率和极限刻蚀深度。结果表明:相比于红外飞秒激光,绿光飞秒激光的刻蚀阈值明显降低,刻蚀率显著提高;与红外飞秒激光刻蚀类似,随着刻蚀次数增加,刻蚀深度增大,但当刻蚀次数增加到一定值后,刻蚀深度出现饱和现象;激光能量密度越高,极限刻蚀深度越大;改变扫描策略进行双道刻蚀时,通过增加刻缝宽度可以增大刻蚀深度;激光诱导等离子体是影响刻蚀深度的主要因素。
Abstract
Objected

Nickel-based superalloys exhibit high potential as raw materials for heated-end-core components because of their superior structural stability, oxidation resistance, corrosion resistance, fatigue resistance, and creep resistance. When compared to electrical discharge machining and normal pulsed laser machining, femtosecond laser machining offers higher precision and a lower heat effect. When a femtosecond laser pulse irradiates a metallic surface, electrons absorb photons and reach high temperature while the lattice remains unchanged, resulting in a low thermal effect. So, the femtosecond laser is expected to have the potential for machining GH3230 superalloys. At present, some reports have focused on femtosecond laser drilling technology and the increase of hole depth of nickel-based alloys, whereas femtosecond laser ablation technology and its characteristics on nickel-based alloys are yet to be discussed. In this study, a green femtosecond laser with a wavelength of 515 nm was used to investigate the ablation threshold, ablation rate, and ablation depth of a GH3230 nickel-based superalloy. Furthermore, an increase in the scanning width is proposed to expand the ablation depth. The effect of plasma induced by a femtosecond laser on the ablation depth is analyzed.

Methods

An as-forged GH3230 superalloy with a thickness of 1.2 mm was used as the base metal in laser ablation. First, a green femtosecond laser with a wavelength of 515 nm was used to ablate the GH3230 surface. The ablation width was measured using a white-light interferometer. The ablation thresholds at different scanning speeds were calculated by fitting the relationship curve between ablation width and laser fluence. The multi-pulse threshold incubation coefficient of GH3230 and ablation threshold of GH3230 under a single laser pulse were obtained by fitting the relationship curve between the ablation threshold and equivalent pulse number. The absorption spectrum of GH3230 was obtained using a spectrophotometer. After various scanning times ranging from 800 to 20000, the ablation depth and width were measured using an optical microscope (OM) with laser fluences of 1.27, 2.54 and 3.81 J/cm2. The saturation of the ablation depth and the limitation of the ablation rate were analyzed to reveal the advantages of green femtosecond laser machining. Finally, the ablation characteristics of GH3230 were adjusted using the overlapping scanning method. The ablation depth and width were measured by OM to obtain the ultimate ablation depth, ablation rate, and depth-to-width ratio. The effect of the scanning spacing is further discussed.

Results and Discussions

In this study, the ablation threshold of GH3230 using a green femtosecond laser was lower than the previously reported ablation threshold of nickel-based alloys using an infrared femtosecond laser. The main reason for this is that the absorption of the green light wave band is much higher than that of the red band. The green laser also reduces the ablation threshold owing to its higher photon energy, which possibly removes materials more efficiently. In the overlapping scanning method, both the ablation width and depth increase. The ablation efficiency of the green femtosecond laser is higher than that of the infrared femtosecond laser. As the scanning width increases, the ablation width increases, which causes the plasma to diffuse laterally and weakens the shielding effect of the plasma on the laser. The energy at the bottom of the groove increases the ablation depth and efficiency.

Conclusions

In this study, the single-pulse laser ablation threshold of as-forged GH3230 superalloy using a green femtosecond laser with a wavelength of 515 nm was 0.27 J/cm2. With an increase in the number of scanning, the ablation depth increases and the beam energy entering the groove bottom decreases. Finally, the ablation depth tends to saturate. In the overlapping scanning method, with an increase in ablation width, the plasma diffuses laterally and reduces the plasma density. The reduction in plasma density increases the ablation depth limit but decreases the depth-to-width ratio of the groove. Compared with an infrared femtosecond laser, the green femtosecond laser can significantly reduce the ablation threshold and improve ablation efficiency.

1 引言

镍基高温合金具有良好的高温组织稳定性、耐蚀性以及抗氧化、抗疲劳、抗蠕变等性能,已被广泛应用于航空航天发动机燃烧室、叶片等热端核心部件的制造1。与电火花、普通脉冲激光加工相比,飞秒激光加工时的激光脉冲持续时间远短于材料内部受激电子数皮秒的弛豫时间,可以最大限度地减小热影响,实现高质量加工2-4。Huang等5采用775 nm波长飞秒激光刻蚀的镍钛合金的表面粗糙度仅为0.2 μm,与精密铣削加工的效果相当,热影响区远小于电火花加工的热影响区。Zhu等6利用飞秒激光在不锈钢上制孔,孔径误差小于10 μm,孔表面粗糙度在1 μm以下,加工质量优于普通脉冲或长脉冲激光的加工质量。

飞秒激光刻蚀、制孔等材料去除技术的加工规律存在相似性,材料去除深度存在极限。研究人员主要通过提高单脉冲激光能量密度来增大深度极限。Ostendorf等7采用780 nm波长飞秒激光刻蚀硅,结果显示:当激光能量密度为50.96 J/cm²时,沟槽的深度极限为500 μm;当提高激光能量密度至101.91 J/cm²时,沟槽的深度极限为600~700 μm。Li等8采用1030 nm飞秒激光多脉冲冲击K24镍基高温合金制孔,结果显示:当激光能量密度为121 J/cm²时,孔深极限为450 μm;将激光能量密度提高一倍后,孔深极限提高至600 μm。目前,针对飞秒激光镍基合金去除的研究主要集中于制孔工艺以及提高孔深极限上,而对飞秒激光刻蚀技术加工规律涉及得较少。

为了进一步探究影响镍基合金飞秒激光刻蚀的规律,本课题组采用515 nm飞秒激光刻蚀GH3230镍基高温合金,研究了GH3230高温合金的绿光飞秒激光刻蚀阈值及极限刻蚀深度,探讨了激光能量密度及扫描间距对极限刻蚀深度的影响规律。同时,本课题组在双道扫描方案中通过扩大刻蚀宽度实现了极限刻蚀深度的增大。

2 试验设备与方法

试验样品选用的是厚度为1.2 mm的锻造态GH3230高温合金。激光刻蚀前,依次使用400、800、1200、1500、2000目砂纸对试样表面进行打磨,以去除其表面的氧化层;再用去离子水、乙醇、丙酮溶液依次进行超声波清洗,清洗时间为10 min,清洗干净后吹干。采用TruMicro 5280 Femto Edition飞秒激光器和ISse14振镜系统进行刻蚀。激光中心波长为515 nm,脉宽为800 fs,最大脉冲频率为600 kHz,最大输出功率为75 W,F-θ镜的焦距为255 mm,聚焦光斑半径为25 μm,瑞利长度为2106 μm。图1(a)为飞秒激光刻蚀试验示意图,焦点位于试样上表面。首先通过单道扫描的方式研究飞秒激光刻蚀GH3230高温合金的刻蚀阈值和极限刻蚀深度;然后采用双道扫描,通过增加横向扫描间距的方法增大扫描宽度,研究极限刻蚀深度与扫描宽度的关系。激光扫描路径如图1(b)所示,其中ΔX为双道扫描时相邻扫描路径的间距,ω0为光斑半径。

图 1. 飞秒激光刻蚀示意图。(a)试验布置;(b)激光扫描路径

Fig. 1. Schematic diagram of femtosecond laser ablation. (a) Experimental setup; (b) laser scanning path

下载图片 查看所有图片

利用Vecco NT1100白光干涉仪测量激光刻蚀深度和宽度,采用Olympus GX51光学显微镜(OM)观察样品的刻蚀形貌,采用UV-3600紫外可见近红外分光光度计测量GH3230的吸收曲线。

3 结果与讨论

3.1 刻蚀阈值

刻蚀阈值是指激光作用于材料表面使其发生破坏所需的最小激光能量密度。本研究采用面积推算法研究材料的刻蚀阈值9。材料表面刻蚀区域的宽度(即刻蚀线宽W)与光斑峰值能量密度F0之间的关系10

W2=2ω02lnF0FNe

其中,

F0=2Pπω02f

式中:FNeNe个激光脉冲下的刻蚀阈值;P为激光平均功率;f为脉冲频率。图2为刻蚀表面的典型三维形貌图,可由截面轮廓形貌获得刻蚀线宽W

图 2. 飞秒激光刻蚀GH3230的典型表面形貌

Fig. 2. Typical surface morphology of GH3230 after femtosecond laser ablation

下载图片 查看所有图片

设置扫描速度为1500、2500、3500 mm/s,在三种不同扫描速度下改变激光能量密度进行刻蚀。结合式(1)~(2)可以获得不同扫描速度下激光峰值能量密度与刻蚀宽度的关系曲线,如图3所示,由此得到扫描速度为1500、2500、3500 mm/s时GH3230高温合金的刻蚀阈值分别为0.16、0.18、0.19 J/cm2。可见,随着扫描速度降低,刻蚀阈值减小。扫描速度不同时,单位激光作用点上的脉冲数不同。单位点上的等效脉冲数Ne与扫描速度的关系10

Ne=N2ω0fv

式中:N为扫描次数;v为扫描速度。由式(3)可知,当扫描速度为1500、2500、3500 mm/s时,单次扫描对应的单位点上的等效脉冲数Ne分别为20、12、9。扫描速度越小,单位点上的等效脉冲数越多,刻蚀阈值越小。

图 3. 不同扫描速度下刻蚀线宽与峰值能量密度F0的拟合曲线

Fig. 3. Fitted curves of ablation width and peak laser fluence at various scanning speeds

下载图片 查看所有图片

刻蚀阈值随着激光脉冲数增多而变小的现象称为阈值孵化效应11。孵化效应是由材料多次被激光照射诱导引起的缺陷积累造成的,这些缺陷会促进材料对激光的吸收,降低材料的刻蚀阈值12-13Ne个激光脉冲对应的刻蚀阈值FNe与单脉冲作用下的刻蚀阈值F1存在式(4)所示的关系。

FNe=F1NeS-1

式中:S为孵化系数,表征孵化效应的强弱。S越小,说明孵化效应越明显,多脉冲作用下的刻蚀阈值越低。当S=1时,多脉冲刻蚀阈值与单脉冲刻蚀阈值相同。材料的刻蚀阈值不会随着脉冲数的变化而改变12。由式(4)可以得到

lgNeFNe=SlgNe+lgF1

根据式(5)NeFNe进行拟合,拟合结果如图4所示,拟合直线的斜率即为孵化系数S,其值为0.83。由拟合直线可以推算出单脉冲下的刻蚀阈值为0.27 J/cm2

图 4. GH3230阈值孵化曲线和吸收曲线。(a)NeFNe随等效脉冲数Ne的变化;(b)GH3230的吸收曲线

Fig. 4. Threshold incubation curve and absorption curve of GH3230. (a) Variation of NeFNe with equivalent pulse number Ne; (b) absorption curve of GH3230

下载图片 查看所有图片

有文献报道GH4099高温合金在1064 nm飞秒激光单脉冲作用下的刻蚀阈值为0.41 J/cm2[14,CMSX-4镍基单晶高温合金在780 nm飞秒激光20个脉冲作用下的刻蚀阈值为0.18 J/cm2[15。本研究获得的GH3230高温合金在515 nm飞秒激光单脉冲作用下的刻蚀阈值为0.27 J/cm2,在20个脉冲(扫描速度1500 mm/s)作用下的刻蚀阈值为0.16 J/cm2,明显低于文献报道的镍基合金红外飞秒激光的刻蚀阈值。材料的刻蚀阈值与材料的光吸收性质、入射激光波长等相关。图4(b)为GH3230的吸收曲线,可以看出GH3230对绿光的吸收率远高于对红光的吸收率。同时,绿光飞秒激光器的波长短,光子能量大,可以降低GH3230的刻蚀阈值16

另外,根据式(1)图3中的三条拟合直线应该平行,其斜率应为2ω02。但实际上,三条拟合直线并不平行。这可能是因为刻蚀边缘区域深度变化不明显,利用白光干涉仪测量得到的刻蚀线宽与实际刻蚀线宽存在偏差。基于拟合直线得到扫描速度为1500、2500、3500 mm/s时的光斑半径分别为21.9、20.4、19.4 μm,小于实际的聚焦光斑半径,误差约为25%。其他研究人员也发现推算的光斑半径与实际聚焦光斑之间存在误差。例如:Ali等17在研究SiNx飞秒激光刻蚀阈值时推算得到的光斑半径与给定值之间的误差为26.8%,Semaltianos等18在研究镍基高温合金C263飞秒激光刻蚀阈值时推算得到的光斑聚焦半径与给定值之间的误差高达47.8%。

3.2 激光能量密度和扫描次数对刻蚀深度的影响

采用单道扫描的方式,保持扫描速度为2500 mm/s不变,分别选取1.27、2.54、3.81 J/cm2的能量密度进行多次扫描刻蚀。图5为相应能量密度(F)下,不同扫描次数(N)对应的刻缝的横截面形貌,刻缝均呈V形。不同能量密度下刻蚀深度随扫描次数的变化如图6所示。在扫描次数相同的条件下,随着能量密度增加,刻蚀深度增加;在能量密度相同的条件下,随着扫描次数增加,刻蚀深度逐渐增大并趋于饱和。能量密度越大,极限刻蚀深度越大,1.27、2.54、3.81 J/cm2能量密度对应的极限刻蚀深度分别为389.6、561.8、654.6 μm。刻蚀深度随扫描次数增大而出现饱和的现象与Li等8的研究结果一致。

图 5. 不同能量密度和扫描次数下刻缝的横截面形貌

Fig. 5. Cross-sectional images of ablated slits at different laser fluences and numbers of laser scannings

下载图片 查看所有图片

图 6. 刻蚀深度随能量密度和扫描次数的变化规律

Fig. 6. Variation of ablation depth with laser fluence and the number of laser scanning

下载图片 查看所有图片

为了探究扫描次数增加到一定值后刻蚀深度逐渐趋于饱和的原因,对聚焦光束在不同能量密度条件下的刻蚀阈值能量密度线进行计算。离焦量z、半径r处的能量密度Fz,r的计算公式为

Fz,r=2Pπωz2fexp-2r2ωz2

式中:ωz表示离焦量为z时所在平面的光斑半径。刻蚀阈值FNe已知,可以得到zr之间的关系为

rz2=-z22lnFNeπωz22Pf

图7所示为扫描速度为2500 mm/s,能量密度分别为1.27、2.54、3.81 J/cm2时对应的聚焦光束的形态以及刻蚀阈值能量密度线。可见,在三个能量密度下,在-3~+3 mm离焦范围内,激光能量密度均超过了刻蚀阈值0.18 J/cm2

图 7. 不同能量密度下聚焦光束的形态以及刻蚀阈值能量密度线。(a)1.27 J/cm2;(b)2.54 J/cm2;(c)3.81 J/cm2

Fig. 7. Shape of focused laser beam and laser fluence distribution of ablation threshold at different laser fluences. (a) 1.27 J/cm2; (b) 2.54 J/cm2; (c) 3.81 J/cm2

下载图片 查看所有图片

然而,在三个能量密度下多次重复刻蚀的实际极限深度均远远小于3 mm。进一步分析发现,试样上表面的刻蚀缝宽均超过了刻蚀阈值对应的光斑直径,而且能量密度越大,差异越明显。三个能量密度下试样上表面的刻蚀阈值对应的光斑直径分别为57.5、64.7、68.4 μm,而深度饱和时刻缝的平均宽度分别为64.0、88.3、116.7 μm,后者分别约为前者的1.11、1.36、1.71倍。因此,多次重复刻蚀出现深度饱和的现象不是因为聚焦光束发散导致的能量密度降低,一种可能的原因是飞秒激光刻蚀时高能密度激光诱导产生等离子体和相爆炸,等离子体和相爆炸溅射产物对激光的屏蔽效应使得激光能量不能继续向深处传递8。刻缝宽度扩大的可能原因主要包括三方面:一是阈值孵化效应,多次刻蚀时的脉冲累积会进一步降低刻蚀阈值12,从而扩大了激光刻蚀范围;二是高能激光诱导试样表面大气击穿形成等离子体,大气等离子体对材料的加热烧蚀扩大了刻缝入口的横向尺寸8;三是试样表面激光诱导等离子体对激光的折射作用扩大了聚焦光斑的直径,从而导致刻缝入口尺寸增大。激光能量密度越高,激光诱导等离子体越稠密,等离子体的影响越大,刻缝宽度的扩大也就越显著。

图8所示为不同能量密度下按单个激光脉冲的刻蚀深度定义的刻蚀率(即刻蚀深度与单位点上的等效脉冲数的比值)随着等效脉冲数的变化规律。随着等效脉冲数增加,刻蚀率逐渐减小并趋于0。当能量密度为3.81 J/cm2时,9600和48000等效脉冲数对应的刻蚀率分别为0.04 μm/pulse和0.01 μm/pulse,48000等效脉冲下的刻蚀率相比9600等效脉冲数下的刻蚀率下降了75%。Li等8进行了K24镍基高温合金的1030 nm飞秒激光打孔试验,结果发现:当能量密度为121 J/cm2时,10000和50000个脉冲数下的刻蚀率分别约为0.04 μm/pulse和0.01 μm/pulse,后者相比前者下降了75%。可以看出,在等效脉冲数大致相近的条件下,本课题组采用能量密度为3.81 J/cm2的绿光飞秒激光刻蚀镍基高温合金时,单位点上的每个激光脉冲的材料去除深度与Li等8采用能量密度为121 J/cm2的红外飞秒激光对镍基高温合金进行打孔时每个激光脉冲的材料去除深度大致相同,但两者的能量密度相差约两个数量级。为此,本文以单位激光能量去除材料的体积来表征刻蚀率,进一步进行对比分析。以文献[8]给出的光斑半径、能量密度及不同脉冲数下的孔径与孔深,计算得到了能量密度为121 J/cm2时,10000和50000个脉冲数下材料的体积刻蚀率分别为1.09×105 μm3/J和2.73×104 μm3/J。本课题组采用线扫描进行刻蚀加工,以刻缝体积除以输入激光总能量计算得到能量密度为3.81 J/cm2时,9600和48000等效脉冲数对应的激光能量体积刻蚀率分别为1.59×106 μm3/J和3.89×105 μm3/J。与Li等8的研究结果相比,在脉冲数相近的条件下,本文获得的激光能量体积刻蚀率提高了1个数量级。可见,与红外飞秒激光相比,采用绿光飞秒激光对镍基高温合金进行刻蚀加工不仅刻蚀阈值明显降低,而且材料去除率显著提高。

图 8. 刻蚀率随能量密度和等效脉冲数(Ne)的变化

Fig. 8. Variation of ablation rate with laser fluence and equivalent pulse number (Ne)

下载图片 查看所有图片

3.3 扫描宽度对极限刻蚀深度的影响

采用双道扫描方式进行刻蚀,通过调节扫描间距来改变扫描宽度,设置能量密度为1.27 J/cm2,扫描速度为2500 mm/s,扫描间距ΔX分别为10、30、40 μm。不同扫描层数下刻缝的横截面形貌如图9所示,可见:刻缝呈V形;随着扫描间距增大,刻蚀深度先增大后减小。不同扫描间距下刻蚀深度随扫描层数的变化规律如图10(a)所示,扫描间距ΔX=0对应于单道刻蚀。与单道刻蚀类似,随着扫描层数增加,双道刻蚀深度先增大后趋于饱和。扫描间距为10、30、40 μm时,双道极限刻蚀深度均值分别为455.7、494.2、463.6 μm,较单道刻蚀的极限深度(389.6 μm)分别提高了17.0%、26.8%及19.0%。不同扫描间距下刻蚀率随等效脉冲数的变化如图10(b)所示。与单道刻蚀相比,扫描间距为10 μm和30 μm的双道刻蚀的刻蚀率增大。在扫描间距为40 μm的条件下,当扫描层数小于400层时,双道刻蚀率低于单道刻蚀率;继续增大扫描层数,双道刻蚀率高于单道刻蚀率。

图 9. 不同扫描间距和扫描层数下刻缝的截面形貌

Fig. 9. Cross-sectional images of ablated slits at different laser scanning spacings and scanning layer numbers

下载图片 查看所有图片

图 10. 刻蚀深度和刻蚀率随扫描间距和扫描层数的变化。(a)刻蚀深度的变化;(b)刻蚀率的变化

Fig. 10. Variation of ablation depth and ablation rate with laser scanning spacing and scanning layer number. (a) Variation of ablation depth; (b) variation of ablation rate

下载图片 查看所有图片

与单道刻蚀相比,双道刻蚀提高了极限刻蚀深度和刻蚀率。其原因可能是:双道刻蚀的刻缝变宽,等离子体横向膨胀扩散,密度变小,对激光的屏蔽效应减弱,材料的去除量增多。扫描间距为0、10、30、40 μm时,平均刻蚀宽度分别为64.0、86.0、100.2、94.1 μm,深宽比为分别为6.0、5.3、4.9、4.9。可见,通过双道刻蚀增大刻缝宽度虽然可以增大极限刻蚀深度,但刻缝的深宽比会变小。

随着扫描间距增大,双道刻蚀的极限刻蚀深度先增大后减小。其原因是随着扫描间距增加,刻缝宽度增大,等离子体横向扩散区域增大,密度变小,对激光的屏蔽效应减弱,刻蚀深度增大;进一步增大扫描间距,到达刻缝中心的激光能量密度降低,随着刻蚀深度增加,刻缝中心的激光能量密度低于材料的刻蚀阈值,刻缝内部中心区域的材料无法被去除,刻蚀深度减小,如图9所示,扫描间距为40 μm、扫描层数为400的刻缝底部出现了两个锥角。

4 结论

本课题组采用515 nm绿光飞秒激光对锻造态GH3230高温合金进行刻蚀试验研究,得到如下结论:

1)锻造态GH3230高温合金的515 nm飞秒激光单脉冲刻蚀阈值约为0.27 J/cm2,多脉冲激光刻蚀的孵化系数为0.83;

2)随着刻蚀次数增加,刻蚀深度增大,进入缝底的光束能量变少,刻蚀深度趋于饱和,极限刻蚀深度随着激光能量密度的增大而增大;

3)在扫描间距不超过光斑直径的情况下进行双道刻蚀时,通过增大刻缝宽度可使等离子体横向膨胀扩散,密度变小,提高极限刻蚀深度,但刻缝的深宽比会减小;

4)与红外飞秒激光相比,绿光飞秒激光刻蚀镍基高温合金可使刻蚀阈值明显降低,刻蚀率显著提高。

参考文献

[1] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: a review[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3): 250-280.

[2] 肖荣诗, 张寰臻, 黄婷. 飞秒激光加工最新研究进展[J]. 机械工程学报, 2016, 52(17): 176-186.

    Xiao R S, Zhang H Z, Huang T. Recent progress in femtosecond pulsed laser processing research[J]. Journal of Mechanical Engineering, 2016, 52(17): 176-186.

[3] Sanner N, Utéza O, Bussiere B, et al. Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics[J]. Applied Physics A, 2009, 94(4): 889-897.

[4] Quintino L, Liu L, Miranda R M, et al. Cutting NiTi with femtosecond laser[J]. Advances in Materials Science and Engineering, 2013, 2013: 198434.

[5] Huang H, Zheng H Y, Lim G C. Femtosecond laser machining characteristics of nitinol[J]. Applied Surface Science, 2004, 228(1/2/3/4): 201-206.

[6] Zhu Q, Fan P, Li N, et al. Femtosecond-laser sharp shaping of millimeter-scale geometries with vertical sidewalls[J]. International Journal of Extreme Manufacturing, 2021, 3(4): 61-72.

[7] Ostendorf A, Kulik C, Bauer T, et al. Ablation of metals and semiconductors with ultrashort pulsed lasers: improving surface qualities of microcuts and grooves[J]. Proceedings of SPIE, 2004, 5340: 153-163.

[8] Li Q, Yang L J, Hou C J, et al. Surface ablation properties and morphology evolution of K24 nickel based superalloy with femtosecond laser percussion drilling[J]. Optics and Lasers in Engineering, 2019, 114: 22-30.

[9] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[10] 秦晓阳, 黄婷, 肖荣诗. 高功率绿光飞秒激光诱导产生钛表面周期性微结构[J]. 中国激光, 2019, 46(10): 1002006.

    Qin X Y, Huang T, Xiao R S. Periodic microstructure on Ti surface induced by high-power green femtosecond laser[J]. Chinese Journal of Lasers, 2019, 46(10): 1002006.

[11] See T L, Liu Z, Liu H, et al. Effect of geometry measurements on characteristics of femtosecond laser ablation of HR4 nickel alloy[J]. Optics and Lasers in Engineering, 2015, 64: 71-78.

[12] 路明雨, 张明, 张开虎, 等. 高模量碳纤维增强树脂基复合材料的皮秒激光加工阈值特性[J]. 复合材料学报, 2021, 38(11): 3601-3609.

    Lu M Y, Zhang M, Zhang K H, et al. Threshold properties of high modulus carbon fiber reinforced plastic composite with picosecond laser processing[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3601-3609.

[13] 卢金龙, 黄婷, 肖荣诗. 微纳米结构TiO2的飞秒激光结合化学氧化复合制备及其光催化性能[J]. 中国激光, 2016, 43(7): 0713001.

    Lu J L, Huang T, Xiao R S. Micro/nanostructure TiO2 fabricated by femtosecond laser combined with chemical oxidation and its photocatalytic performance[J]. Chinese Journal of Lasers, 2016, 43(7): 0713001.

[14] 刘海建, 陈旭, 马振武, 等. GH4099合金的飞秒激光去除阈值[J]. 机械工程材料, 2020, 44(6): 21-24.

    Liu H J, Chen X, Ma Z W, et al. Femtosecond laser removal threshold of GH4099 alloy[J]. Materials for Mechanical Engineering, 2020, 44(6): 21-24.

[15] 张伟, 冯强, 程光华, 等. 飞秒激光对镍基合金的损伤机制和阈值行为[J]. 光学学报, 2014, 34(12): 1232001.

    Zhang W, Feng Q, Cheng G H, et al. Femtoseoncd laser-induced ablation regimes and thresholds in a nickel-based superalloy[J]. Acta Optica Sinica, 2014, 34(12): 1232001.

[16] 于淼, 黄婷, 肖荣诗. 长焦距绿光飞秒激光玻璃焊接[J]. 中国激光, 2020, 47(9): 0902005.

    Yu M, Huang T, Xiao R S. Long focal length green femtosecond laser welding of glass[J]. Chinese Journal of Lasers, 2020, 47(9): 0902005.

[17] Ali J M Y, Shanmugam V, Lim B, et al. Femtosecond laser ablation of dielectric layers for high-efficiency silicon wafer solar cells[J]. Solar Energy, 2018, 164: 287-291.

[18] Semaltianos N G, Perrie W, French P, et al. Femtosecond laser ablation characteristics of nickel-based superalloy C263[J]. Applied Physics A, 2009, 94(4): 999-1009.

黄彩丽, 蒋麒, 蔺晓超, 杨诗瑞, 郭鹏, 崔梦雅, 黄婷. GH3230高温合金绿光飞秒激光的刻蚀特性[J]. 中国激光, 2023, 50(8): 0802106. Caili Huang, Qi Jiang, Xiaochao Lin, Shirui Yang, Peng Guo, Mengya Cui, Ting Huang. Ablation Characteristics of GH3230 Superalloy Using Green Femtosecond Laser[J]. Chinese Journal of Lasers, 2023, 50(8): 0802106.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!