人工晶体学报, 2023, 52 (8): 1422, 网络出版: 2023-10-28  

新型热电材料Y2Te3热电性能应变调控研究

Thermoelectric Properties of the Novel Thermoelectric Material Y2Te3 Through Strain Modulation
作者单位
中国石油大学(北京)能源交叉学科基础研究中心,油气光学探测技术北京市重点实验室,北京 102249
摘要
具有低晶格热导率的稀土硫族化合物Y2Te3是一种非常有前途的新型热电材料,施加应变是调控热电材料热电性能的有效手段。本文采用第一性原理方法结合半经典玻尔兹曼输运理论,通过施加-4%到4%的应变对Y2Te3材料的热电性能进行应变调控。研究表明,施加压缩应变对Y2Te3材料热电性能的提高优于施加拉伸应变。300 K下p型Y2Te3的最大功率因数由0.4 mW·m-1·K-2提升到1.6 mW·m-1·K-2,n型Y2Te3在压缩应变下最大功率因数由8 mW·m-1·K-2提升到11 mW·m-1·K-2。300 K下p型Y2Te3在应变调控下最大热电优值ZT由0.07提升到0.15,n型Y2Te3在压缩应变下最大热电优值ZT由0.7提升到0.9。因此,n型Y2Te3具有非常优异的热电性能,通过施加应变可以有效调控Y2Te3材料的热电性能,n型Y2Te3具有作为热电材料的巨大潜力。
Abstract
The rare-earth chalcogenides Y2Te3 with low lattice thermal conductivity is a very promising novel thermoelectric material. Applying strain is an effective way to modulate the thermoelectric properties of thermoelectric materials. In this paper, first-principles approach combined with the semiclassical Boltzmann transport theory were used to study the strain modulation of the thermoelectric properties of Y2Te3 materials, for which -4% to 4% strain was applied to the Y2Te3 materials. The results show that applying compressive strain may modulate thermoelectric properties more effectively than tensile strain. The maximum power factor of p-type Y2Te3 increases from 0.4 mW·m-1·K-2 to 1.6 mW·m-1·K-2 at 300 K, and the maximum power factor of n-type Y2Te3 increases from 8 mW·m-1·K-2 to 11 mW·m-1·K-2 under compressive strain. The maximum thermoelectric figure of merit (ZT) of p-type Y2Te3 increases from 0.07 to 0.15 under strain modulation at 300 K, and the maximum ZT of n-type Y2Te3 increases from 0.7 to 0.9 under compressive strain. Therefore, n-type Y2Te3 has very excellent thermoelectric properties, and the thermoelectric properties of Y2Te3 materials can be effectively regulated by applying strain. n-type Y2Te3 has great potential as a thermoelectric material.
参考文献

[1] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105.

[2] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials, 2018, 8(6): 1701797.

[3] HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355.

[4] CHANNEGOWDA M, MULLA R, NAGARAJ Y, et al. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity[J]. ACS Applied Energy Materials, 2022, 5(7): 7913-7943.

[5] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.

[6] 余泽浩, 张力发, 吴 靖, 等. 二维层状热电材料研究进展[J]. 物理学报, 2023, 72(5): 135-155.

[7] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385-1389.

[8] LV H Y, LU W J, SHAO D F, et al. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer[J]. Journal of Materials Chemistry C, 2016, 4(20): 4538-4545.

[9] OUYANG Y L, ZHANG Z W, LI D F, et al. Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance[J]. Annalen Der Physik, 2019, 531(4): 1800437.

[10] 徐 庆, 赵琨鹏, 魏天然, 等. 热电材料的研究现状与未来展望[J]. 硅酸盐学报, 2021, 49(7): 1296-1305.

[11] ZHU T S, HE R, GONG S, et al. Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics[J]. Energy & Environmental Science, 2021, 14(6): 3559-3566.

[12] MAY A F, SINGH D J, SNYDER G J. Influence of band structure on the large thermoelectric performance of lanthanum telluride[J]. Physical Review B, 2009, 79(15): 153101.

[13] DELAIRE O, MAY A F, MCGUIRE M A, et al. Phonon density of states and heat capacity of La3-xTe4[J]. Physical Review B, 2009, 80(18): 184302.

[14] CHEIKH D, HOGAN B E, VO T, et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material[J]. Joule, 2018, 2(4): 698-709.

[15] GOMEZ S J, CHEIKH D, VO T, et al. Synthesis and characterization of vacancy-doped neodymium telluride for thermoelectric applications[J]. Chemistry of Materials, 2019, 31(12): 4460-4468.

[16] WOOD C, LOCKWOOD A, PARKER J, et al. Thermoelectric properties of lanthanum sulfide[J]. Journal of Applied Physics, 1985, 58(4): 1542-1547.

[17] HE Z M, YANG M, WANG Z M, et al. Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3[J]. Advanced Composites and Hybrid Materials, 2022, 5(4): 2884-2895.

[18] CHEIKH D, LEE K, PENG W Y, et al. Thermoelectric properties of scandium sesquitelluride[J]. Materials, 2019, 12(5): 734.

[19] OCZECHIN A, SRON K, BARRAS A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 42964-42974.

[20] WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride[J]. Advanced Electronic Materials, 2019, 5(6): 1800904.

[21] TORIYAMA M Y, CHEIKH D, BUX S K, et al. Y2Te3: a new n-type thermoelectric material[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43517-43526.

[22] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[J]. Chemistry of Materials, 2016, 28(1): 376-384.

[23] TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence[J]. Journal of the American Chemical Society, 2015, 137(15): 5100-5112.

[24] PICCIONE B, GIANOLA D S. Tunable thermoelectric transport in nanomeshes via elastic strain engineering[J]. Applied Physics Letters, 2015, 106(11): 113101.

[25] CHANDRA SHEKAR N V, POLVANI D A, MENG J F, et al. Improved thermoelectric properties due to electronic topological transition under high pressure[J]. Physica B: Condensed Matter, 2005, 358(1/2/3/4): 14-18.

[26] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.

[27] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

[28] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.

[29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[30] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979.

[31] GORAI P, TOBERER E S, STEVANOVIC' V. Thermoelectricity in transition metal compounds: the role of spin disorder[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31777-31786.

[32] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509.

[33] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

[34] MADSEN G K H, CARRETE J, VERSTRAETE M J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients[J]. Computer Physics Communications, 2018, 231: 140-145.

[35] BARDEEN J, SHOCKLEY W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80.

[36] ZHU X L, LIU P F, XIE G F, et al. Thermoelectric properties of hexagonal M2C3 (M=As, Sb, and Bi) monolayers from first-principles calculations[J]. Nanomaterials, 2019, 9(4): 597.

[37] KUMAR S, SCHWINGENSCHLGL U. Thermoelectric response of bulk and monolayer MoSe2 and WSe2[J]. Chemistry of Materials, 2015, 27(4): 1278-1284.

[38] LEE M S, POUDEU F P, MAHANTI S D. Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds[J]. Physical Review B, 2011, 83(8): 085204.

[39] GUO D L, HU C G, XI Y, et al. Strain effects to optimize thermoelectric properties of doped Bi2O2Se via tran-blaha modified becke-johnson density functional theory[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21597-21602.

[40] XI J Y, LONG M Q, TANG L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials[J]. Nanoscale, 2012, 4(15): 4348-4369.

[41] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.

[42] WANG F Q, GUO Y G, WANG Q A, et al. Exceptional thermoelectric properties of layered GeAs2[J]. Chemistry of Materials, 2017, 29(21): 9300-9307.

[43] JONSON M, MAHAN G D. Mott’s formula for the thermopower and the Wiedemann-Franz law[J]. Physical Review B, 1980, 21(10): 4223-4229.

[44] STOJANOVIC N, MAITHRIPALA D H S, BERG J M, et al. Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law[J]. Physical Review B, 2010, 82(7): 075418.

夏雨虹, 杨振清, 周露露, 邵长金. 新型热电材料Y2Te3热电性能应变调控研究[J]. 人工晶体学报, 2023, 52(8): 1422. XIA Yuhong, YANG Zhenqing, ZHOU Lulu, SHAO Changjin. Thermoelectric Properties of the Novel Thermoelectric Material Y2Te3 Through Strain Modulation[J]. Journal of Synthetic Crystals, 2023, 52(8): 1422.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!