人工晶体学报, 2023, 52 (8): 1394, 网络出版: 2023-10-28  

双轴应变对单层CdZnTe电子特性和光学性能的影响

Effect of Biaxial Strain on Electronic and Optical Properties of Single-Layer CdZnTe
作者单位
北京石油化工学院新材料与化工学院,北京 102617
摘要
研究双轴应变对单层CdZnTe半导体材料电子特性与光学性能的影响,可为制备光学性能优异的CdZnTe器件提供理论支持。本文采用Material Studio 软件构建单层CdZnTe模型,并在其(100)和(010)方向上施加应变。基于密度泛函理论的第一性原理模拟计算了单层双轴应变对单层CdZnTe带隙、载流子有效质量、迁移率和介电常数等性能的影响。结果表明,拉伸和压缩应变均能减小单层CdZnTe的带隙,且双轴应变可有效调控单层CdZnTe的载流子有效质量、迁移率和介电常数。与拉伸应变相比,相同大小的压缩应变对单层CdZnTe性能的调控更加明显。随施加双轴压缩应变的增大,单层CdZnTe的带隙值逐渐减小,CdZnTe半导体吸收光的波长范围得到提高,单层CdZnTe的载流子有效质量、迁移率总体呈下降趋势,介电常数实部逐渐下降,虚部逐渐上升,意味着单层CdZnTe的金属性增强,光学性能提高。
Abstract
Studying the effect of biaxial strain on the electronic and optical properties of single-layer CdZnTe semiconductor materials provide theoretical support for the preparation of CdZnTe devices with excellent optical properties. In this paper, a single-layer CdZnTe model was built with the Material Studio software, and strain is applied to the model in the (100) and (010) directions. Based on the first-principle of density functional theory, the effects of biaxial strain on the band gap, effective mass of carrier, mobility and dielectric constant of single-layer CdZnTe were simulated and calculated. The results show that both tensile and compressive strains reduce the band gap of the single-layer CdZnTe, and biaxial strain effectively control the effective mass, mobility and dielectric constant of carriers. Compared with the tensile strain, compression strain of the same size has more obvious effect on the properties of the single-layer CdZnTe. With the increase of applied biaxial compression strain, the band gap of the single-layer CdZnTe gradually decreases, which leds to the increase of wavelength range of absorption light of the CdZnTe semiconductor, and the carrier effective mass and mobility of single-layer CdZnTe show an overall downward trend. Also, the increase of applied biaxial compression strain makes the real part of the dielectric constant gradually decrease and the imaginary part of the dielectric constant gradually increase, which enhances the metallicity of the single layer CdZnTe and improves its optical performance.
参考文献

[1] LI Y, CAO K, ZHA G Q, et al. Effects of annealing on the properties of CdZnTe epitaxial thick films deposited on p-GaAs using close-spaced sublimation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165752.

[2] LV L L, SHEN Y Q, GAO X, et al. Strain engineering on the electrical properties and photocatalytic activity in gold sulfide monolayer[J]. Applied Surface Science, 2021, 546: 149066.

[3] WANG Y P, HUANG S, ZHAO H, et al. First principles study on properties of monolayer MoS2 under different strains[J]. Brazilian Journal of Physics, 2021, 51(4): 1230-1236.

[4] ABDULAMEER M J, ABED AL-ABBAS S S, JAPPOR H R. Tuning optical and electronic properties of 2D ZnI2/CdS heterostructure by biaxial strains for optical nanodevices: a first-principles study[J]. Journal of Applied Physics, 2021, 129(22): 225104.

[5] SUKKABOT W. Theoretical investigation of electronic and magnetic optical properties of CdS doped and Co doped with transition metals (Mn, Fe, and Cu): spin density functional theory[J]. IEEE Transactions on Magnetics, 2020, 56(9): 1-6.

[6] HEIBA Z K, MOHAMED M B, MOSTAFA N Y. Effect of V and Y doping on the structural, optical and electronic properties of CdS (hexagonal and cubic phases)[J]. Applied Physics A, 2019, 125(2): 132.

[7] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.

[8] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570.

[9] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[10] CHANDER S, DE A K, DHAKA M S. Towards CdZnTe solar cells: an evolution to post-treatment annealing atmosphere[J]. Solar Energy, 2018, 174: 757-761.

[11] 陈 莎, 王海龙, 陈 丽, 等. Cd1-xMnxTe/CdTe量子阱中电子-LO声子散射率[J]. 量子电子学报, 2017, 34(1): 94-98.

[12] 汤 凯. 基于氧化物衬底的CdTe单晶薄膜的分子束外延制备及外延机制[D]. 上海: 华东师范大学.

[13] CAI Y, LIU Y, XIE Y, et al. Band structure, effective mass, and carrier mobility of few-layer h-AlN under layer and strain engineering[J]. APL Materials, 2020, 8(2): 021107.

[14] 郭榕榕. 探测器用CdZnTe晶体载流子输运过程的研究[D]. 西安: 西北工业大学.

[15] SCHUBERT M, HOFMANN T, HERZINGER C M. Generalized far-infrared magneto-optic ellipsometry for semiconductor layer structures: determination of free-carrier effective-mass, mobility, and concentration parameters in n-type GaAs[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2003, 20(2): 347-356.

聂凡, 韩硕, 曾冬梅. 双轴应变对单层CdZnTe电子特性和光学性能的影响[J]. 人工晶体学报, 2023, 52(8): 1394. NIE Fan, HAN Shuo, ZENG Dongmei. Effect of Biaxial Strain on Electronic and Optical Properties of Single-Layer CdZnTe[J]. Journal of Synthetic Crystals, 2023, 52(8): 1394.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!