光子学报, 2018, 47 (6): 0601003, 网络出版: 2018-09-07   

地球同步轨道空间目标地基逆合成孔径激光雷达系统分析

System Analysis of Ground-based Inverse Synthetic Aperture Lidar for Geosynchronous Orbit Object Imaging
胡烜 1,2,*李道京 1付瀚初 2,3,4魏凯 3,4
作者单位
1 中国科学院电子学研究所 微波成像技术重点实验室, 北京 100190
2 中国科学院大学, 北京 100049
3 中国科学院自适应光学重点实验室, 成都 610209
4 中国科学院光电技术研究所, 成都 610209
摘要
对用于地球同步轨道空间目标进行成像观测的地基逆合成孔径激光雷达系统进行了分析.讨论了地球同步轨道空间目标运动特性和观测几何模型, 分析了地基逆合成孔径激光雷达系统指标, 波形选择为无周期相位编码信号, 提出了基于发射和本振参考通道的信号相干性保持方法.根据目标存在振动和三维自转的特点, 采用正交基线干涉处理的方法进行运动相位误差估计与补偿.引入自适应光学系统实现大气时变相位误差校正, 同时明确了基于正交基线干涉处理的逆合成孔径激光雷达与自适应光学在大气校正方面具有互补性.设计了初步系统方案, 仿真验证了目标振动和三维自转对逆合成孔径激光雷达成像有明显的影响.
Abstract
In this paper, the ground-based inverse synthetic aperture lidar for geosynchronous orbit objects imaging is analyzed. The motion characteristics and observation geometric of geosynchronous orbit objects are discussed and the system parameters of inverse synthetic aperture lidar are analyzed. The waveform is chosen to be acyclic phase-coded signal. A signal coherence preserving method based on both transmitting and local oscillator reference channels is proposed. Since the object has both vibration and three-dimensional rotation, the motion phase error estimation and compensation are implemented based on orthogonal baselines interferometry processing. The adaptive optics system is introduced to complete the time-varying phase error correction, which results from atmospheric turbulence. Moreover, it’s clarified that the inverse synthetic aperture lidar based on orthogonal baselines interferometry processing and the adaptive optics are complementary in the atmospheric correction. A preliminary system scheme is designed and simulation results show that the target vibration and three-dimensional rotation have a significant influence on inverse synthetic aperture lidar imaging.
参考文献

[1] GSCHWENDTNER A B, KEICHER W E. Development of coherent laser radar at lincoln laboratory[J].Lincoln Laboratory Journal, 2000,12(2): 383-394.

[2] KRAUSE B W, BUCK J, RYAN C, et al. Synthetic aperture ladar flight demonstration[C]. Optical Society of America/Conference on Lasers and Electro-optics (OSA/CLEO), 2011.

[3] CONTRACTS[EB/OL].[2018-01-04]http: //archive.defense.gov/Contracts/Contract.aspx ContractID=5140.

[4] 邢孟道. 合成孔径成像激光雷达技术研究[R]. 国家高技术研究发展计划(863计划)项目研究报告,2008.

    XING Meng-dao. Synthetic aperture ladar techniques research[R]. National High Technology Research and Development (863)Program Report, 2008.

[5] LIU L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579-599.

[6] LUAN Z, SUN J, ZHOU Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 2014, 12(11): 111101.

[7] 李道京, 杜剑波,马萌, 等. 天基合成孔径激光雷达系统分析[J]. 红外与激光工程, 2016, 45(11): 269-276.

    LI Dao-jing, DU Jian-bo, MA Meng, et al. The system analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engine, 2016, 45(11): 269-276.

[8] 高阳特, 赵秉吉. 地球同步轨道空间碎片分布及运动特性分析[C] 第二届全国太赫兹科学技术与应用学术交流会, 2016: 437-443.

    GAO Yang-te, ZHAO Bing-ji. Distribution and moving characteristic analysis of space craps[C]. The second conference of national THz technology and application, 2016: 437-443.

[9] 廖辉. 对地定向三轴稳定卫星姿态确定和控制系统研究[D]. 西安:西北工业大学, 2000: 51-112.

    LIAO Hui. Studies on the attitude determination and control system of an earth-oriented three-axis stabilized satellite[D]. Xi’an: Northwestern Polytechnical University, 2000: 51-112.

[10] 丁璐飞, 耿富录. 雷达原理[M]. 西安: 西安电子科技大学出版社, 2011: 127-130.

[11] 斯科尼克主编, 王军等译. 雷达手册(第2版):[M]. 电子工业出版社, 2003: 18-20.

[12] 杜剑波. 合成孔径激光雷达宽带信号产生和成像处理技术研究[D].北京:中国科学院大学, 2017: 49-69.

    DU Jian-bo. Research on wideband signal generation and imaging processing technology for SAL[D]. Beijing: University of Chinese Academy of Scicences, 2017: 49-69.

[13] 蒲涛, 闻传花. 微波光子学原理与应用[M].北京:电子工业出版社, 2015. 240-246.

[14] 胡烜,李道京,田鹤,等.激光雷达信号相位误差对合成孔径成像的影响和校正[J]. 红外与激光工程, 2018,47(3): 0306001.

    HU Xuan, LI Dao-jing, TIAN He, et al. Impact and correction of phase error in ladar signal to synthetic aperture imaging[J]. Infrared and Laser Engine, 2018, 47(3): 0306001

[15] 胡烜,李道京,赵绪锋. 基于本振数字延时的合成孔径激光雷达信号相干性保持方法[J].中国激光, 2018,45(5) : 0510003.

    HU Xuan, LI Dao-jing, ZHAO Xu-feng. One method to remain signal coherence in synthetic aperture ladar based on local oscillator digital delay[J]. Chinese Journal of Lasers, 2018,45(5): 0510003.

[16] 马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报, 2014, 3(5): 591-602.

    MA Meng, LI Dao-jing, DU Jian-bo. Imaging of airborne synthetic aperture ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5): 591-602.

[17] 杜剑波, 李道京, 马萌, 胡烜, 乔明. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 247-258.

    DU Jian-bo, LI Dao-jing, MA Meng, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese Journal of Lasers, 2016, 43(9): 247-258.

[18] 马萌, 李道京. 正交长基线毫米波InISAR运动目标三维成像[J]. 红外与毫米波学报, 2016, 35(4): 488-495.

    MA Meng, LI Dao-jing. 3-D imaging for moving targets based on millimeter-wave InISAR with long orthogonal baselines[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 488-495.

[19] HU Xuan, LI Dao-jing. Vibration estimation of synthetic aperture lidar based on division of inner view field by two detectors along track[C].IGARSS2016.

[20] 戴品娟, 刘国国, 吴瑾. 大气湍流下合成孔径激光雷达成像数值模拟及PGA补偿[J]. 光学学报, 2010,30(3): 739-746.

    DAI Pin-juan, LIU Guo-guo, WU Jin. Numerical simulation on synthetic aperture ladar imaging through atmospheric turbulence with phase gradient algorithm compensation[J]. Acta Optica Sinica. 2010,30(3): 739-746.

[21] 姜文汉. 自适应光学技术[J]. 自然杂志, 2006,28(1): 7-13.

    JIANG Wen-hang. Adaptive optical technology[J]. Journal of Nature, 2006,28(1): 7-13.

[22] 陈文驰, 保铮, 邢孟道. 基于Keystone变换的低信噪比ISAR成像[J]. 西安电子科技大学学报自然科学版, 2003, 30(2): 155-159.

    CHEN Wen-chi, BAO Zheng, XING Meng-dao. Keystone transformation based ISAR imaging at the low SNR level[J]. Journal of XIDIAN University. 2003, 30(2): 155-159.

胡烜, 李道京, 付瀚初, 魏凯. 地球同步轨道空间目标地基逆合成孔径激光雷达系统分析[J]. 光子学报, 2018, 47(6): 0601003. HU Xuan, LI Dao-jing, FU Han-chu, WEI Kai. System Analysis of Ground-based Inverse Synthetic Aperture Lidar for Geosynchronous Orbit Object Imaging[J]. ACTA PHOTONICA SINICA, 2018, 47(6): 0601003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!