压电与声光, 2022, 44 (4): 507, 网络出版: 2022-10-29   

1-3型压电复合材料的机电响应特性和温度稳定性

Electromechanical Response Characteristics and Temperature Stability of 1-3 Piezoelectric Composites
作者单位
1 中南大学 粉末冶金研究院 粉末冶金国家重点实验室, 湖南 长沙 410083
2 中电科技集团 重庆声光电有限公司,重庆 401332
3 中南大学 化学化工学院, 湖南 长沙 410083
摘要
1-3型压电复合材料具备优异的机电耦合性能, 这对于高性能压电换能器的开发具有重要意义。该文采用低成本的切割填充法制备了不同结构参数的1-3型PZT/环氧树脂复合材料, 并结合有限元模拟法对其压电性能、机电响应特性和温度稳定性进行了系统地研究。1-3阵列结构对平面方向应变产生了很大的衰减, 使能量更集中于厚度共振模式。复合材料的高径比是影响机电耦合性能的主要因素, 更精细的阵列结构有利于高性能压电换能器的制造。在-20~60 ℃内, 1-3型压电复合材料的厚度机电耦合系数约为0.61, 变化率小于1%,表现出良好的温度稳定性。
Abstract
The 1-3 piezoelectric composites have great significance for the development of high-performance piezoelectric transducers due to its excellent electromechanical coupling properties. The 1-3 PZT/E-poxy composites with different structural parameters are fabricated by low-cost dice-fill process, and the piezoelectric properties, electromechanical response characteristics and temperature stability are systematically studied combined with the finite element simulation method. The 1-3 array structure produces a large attenuation of plane strain, which cause more concentrated energy in the thickness resonance mode. The aspect ratio of composites is the main factor affecting the electromechanical coupling performance, and the finer array structure is beneficial to the fabrication of high-performance piezoelectric transducers. The 1-3 piezoelectric composites show excellent temperature stability in the common temperature range from -20 ℃ to 60 ℃, while the thickness electromechanical coupling coefficient remains at about 0.61 with the change rate less than 1%.
参考文献

[1] JI B,HONG L,LAN Y.Ultra-wide operation band of the high-frequency underwater acoustic transducer realized by two-layer 1-3 piezoelectric composite [J].The Journal of the Acoustical Society of America,2021,150(5):3474-3484.

[2] DENG X,XU T,HUANG G,et al.Design and fabrication of a novel dual-frequency confocal ultrasound transducer for microvessels super-harmonic imaging [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2020,68(4):1272-1277.

[3] 徐先洋,钱霖,张峰,等.1-3型水泥基压电复合材料在冲击载荷下的电学响应[J].压电与声光,2017,39(3):433-436.

[4] OKOSUN F,CELIKIN M,PAKRASHI V.A numerical model for experimental designs of vibration-based leak detection and monitoring of water pipes using piezoelectric patches [J].Sensors-Basel,2020,20(23):6708.

[5] 白玮,王佳荣,王婷,等.基于1-3型压电单晶复合材料的高频宽带发射换能器[J].硅酸盐学报,2022,50(3):556-562.

[6] XU J,HAN Z,WANG N,et al.Micromachined high frequency 1-3 piezocomposite transducer using picosecond laser [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2021,68(6):2219-2226.

[7] CHEN D,HOU C,FEI C,et al.An optimization design strategy of 1-3 piezocomposite ultrasonic transducer for imaging applications [J].Materials Today Communications,2020,24:100991.

[8] KIM T,CUI Z,CHANG W Y,et al.Flexible 1-3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes[J].IEEE Transactions on Industrial Electronics,2019,67(8):6955-6962.

[9] KE Q,LIEW W H,TAO H,et al.KNNS-BNZH lead-free 1-3 piezoelectric composite for ultrasonic and photoacoustic imaging [J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2019,66(8):1395-1401.

[10] LI Z,SHAO W,ZHU X,et al.Parylene coating for 13 MHz 1-3 composite transducer performance enhancement [J].Applied Acoustics,2021,174:107696.

[11] WANG Y,LIN X,LI J,et al.Effect of structural parameters and stability of constituent materials on the performance of 1-3 spherical crown piezocomposite and transducer [J].Sensors and Actuators A:Physical,2018,278(1):18-24.

[12] GARCIA-GANCEDO L,OLHERO S,ALVES F,et al.Application of Gel-casting to the fabrication of 1-3 piezoelectric ceramic-polymer composites for high-frequency ultrasound devices[J].J Micromech Microeng,2012,22(12):125001.

刘盛文, 王露, 翟迪, 袁晰, 周科朝, 张斗. 1-3型压电复合材料的机电响应特性和温度稳定性[J]. 压电与声光, 2022, 44(4): 507. LIU Shengwen, WANG Lu, ZHAI Di, YUAN Xi, ZHOU Kechao, ZHANG Dou. Electromechanical Response Characteristics and Temperature Stability of 1-3 Piezoelectric Composites[J]. Piezoelectrics & Acoustooptics, 2022, 44(4): 507.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!