量子电子学报, 2018, 35 (2): 246, 网络出版: 2018-04-23  

锥形光纤光栅传感特性研究

Sensing characteristics of tapered fiber grating
作者单位
南京邮电大学光电工程学院光电传感工程研究中心, 江苏 南京 210023
摘要
对锥形光纤光栅(TFG)的传感特性进行了理论分析,基于传输矩阵法分析了应力与温度对不同锥角TFG反射谱特性的影响。 研究表明随着应力的增大,TFG中心波长向长波长移动,反射带宽展宽。中心波长、反射带宽均与所施加的应力成线性关系。锥度越大,中心波长、 反射带宽的应变灵敏度越。温度逐渐升高时中心波长向长波长移动,反射带宽不变。增大锥度,中心波长、反射带宽均不变。TFG反射带宽与温度无关, 只依赖于应力大小,利用这一特性可以解决温度与应力交叉敏感的问题。
Abstract
The sensing properties of tapered fiber grating (TFG) are theoretically analyzed. The influence of stress and temperature on characteristics of TFG reflection spectra of different taper angles is analyzed based on transfer matrix method. Results show that the center wavelength shifts to long wavelength and the reflection bandwidth is broadened with increasing of stress. The center wavelength and reflection bandwidth are all linear with the applied stress. The greater the taper angle is, the higher the stress sensitivity of center wavelength and reflection bandwidth will be. The center wavelength shifts to long wavelength when the temperature rises gradually, and the reflection bandwidth is constant. The center wavelength and reflection bandwidth are unchanged when the taper degree increases. The reflection bandwidth of TFG is temperature independent, and only dependent on stress, which can be used to solve the cross-sensitivity problem of temperature and stress.
参考文献

[1] Tian Shizhu, Cao Changcheng, Wang Dapeng. Experimental study on fiber grating sensor monitoring the crack of concrete[J]. Chinese Journal of Lasers (中国激光), 2013, 40(1): 0114001 (in Chinese).

[2] Tao Jun, Mu Lei, Du Ping. Application of multi-point optical fiber grating temperature measurement system on seepage monitoring[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2010, 27(1): 105-109 (in Chinese).

[3] Zhang Yu, Zhao Chongyi, Chen Jiexiang, et al. Damage detection of composite materials based on fiber Bragg grating sensor technology[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(5): 608-614 (in Chinese).

[4] Yoon M S, Park S, Han Y G. Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating[J]. Journal of Lightwave Technology, 2012, 30(8): 1156-1160.

[5] Osuch T. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps[J]. Optics Communications, 2016, 36(1): 194-199.

[6] Yin Bin, Bai Yunlong, Qi Yanhui, et al. Study on tapered chirped fiber grating filter[J]. Acta Physica Sinica (物理学报), 2013, 62(21): 214213(in Chinese).

[7] Putnam M A, Williams G L M, Friebele E J. Fabrication of tapered, strain-gradient chirped fiber Bragg gratings[J]. Electronics Letters, 1995, 31(4): 309-310.

[8] Yang Xianhui, Yu Yongsen, Zhang Qiuhua, et al. Strain sensing method based on the measurement of the reflected bandwidth from tapered fiber grating[J]. Journal of Optoelectronics·Laser (光电子·激光), 2007, 18(5): 600-602 (in Chinese).

[9] Dong X W, Liu W K, Zhao R F. Liquid-level sensor based on tapered chirped fiber grating[J]. Science China Technological Sciences, 2012, 5(2): 471-474.

涂兴华, 耿胜各. 锥形光纤光栅传感特性研究[J]. 量子电子学报, 2018, 35(2): 246. TU Xinghua, GENG Shengge. Sensing characteristics of tapered fiber grating[J]. Chinese Journal of Quantum Electronics, 2018, 35(2): 246.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!