硅酸盐学报, 2023, 51 (4): 859, 网络出版: 2023-04-15  

面向6G应用的超低介电常数定向通孔Al2O3陶瓷

Porous Alumina Ceramics with Ultra-Low Dielectric Constant and Directional Pore Channels for 6G Telecommunication Applications
作者单位
清华大学材料学院, 新型陶瓷与精细工艺国家重点实验室, 北京 100084
摘要
为了满足6G太赫兹频段低时延通信技术的要求, 采用冷冻干燥法制备了具有超低介电常数的定向通孔结构多孔氧化铝陶瓷。研究不同部位样品的结构与性能关系, 以及固相含量对微观形貌、力学性能、太赫兹光学和介电性能的影响。获得具有高气孔率(68.9%~81.0%)、高抗压强度(17.6~87.8 MPa)的多孔氧化铝陶瓷, 在1 THz下具有超低的折射率(1.38~1.63)、吸收系数(~2.5 cm-1)、介电常数(1.90~2.67)和介电损耗(~0.008)。定向通孔结构在与气孔平行的方向具有高抗压强度, 其特殊的结构在太赫兹波导和天线基板等方面有重要的潜在应用价值。
Abstract
To meet the requirements of low-latency communication technology in the 6G terahertz band, porous alumina ceramics with ultra-low dielectric constant and directional pore channels were prepared by a freeze-drying method. A relationship between the structure and the properties of samples from different locations was investigated. The effect of solid content on the microstructure, mechanical properties, terahertz optical and dielectric properties was analyzed. Porous alumina ceramics with high porosity (i.e., 68.9%-81.0%) and compressive strength (i.e., 17.6-87.8 MPa) can be obtained, having ultra-low refractive index (i.e., 1.38-1.63), absorption coefficient (i.e., ~2.5 cm-1), dielectric constant (i.e., 1.90-2.67), and z dielectric loss (i.e., ~0.008) at 1 THz. The directional pore channels exhibit high compressive strength in the direction parallel to the pores, and the special structure has potential applications for terahertz waveguides and antenna substrates.
参考文献

[1] ZHANG Z Q, XIAO Y, MA Z, et al. 6G wireless networks vision, requirements, architecture, and key technologies[J]. IEEE Veh Technol Mag, 2019, 14(3): 28-41.

[2] GIORDANI M, POLESE M, MEZZAVILLA M, et al. Toward 6G networks: Use cases and technologies[J]. IEEE Commun Mag, 2020, 58(3): 55-61.

[3] SEBASTIAN M T. Dielectric materials for wireless communication[M]. Kidlington, UK: Elsevier, 2010.

[4] KAMUTZKI F, SCHNEIDER S, BAROWSKI J, et al. Silicate dielectric ceramics for millimetre wave applications[J]. J Eur Ceram Soc, 2021, 41(7): 3879-3894.

[5] CHEN Y G, GUO W J, LUO Y, et al. Microwave and terahertz properties of porous Ba4(Sm,Nd,Bi)28/3Ti18O54 ceramics obtained by sacrificial template method[J]. J Am Ceram Soc, 2021, 104(11): 5679-5688.

[6] LUO Y, GUO W J, CHEN Y G, et al. Thermally-stimulated defect relaxations and microwave/terahertz dielectric response of La,Al co-doped (Ba,Sr)La4Ti4O15 ceramics[J]. J Eur Ceram Soc, 2021, 41(16): 158-164.

[7] KERKER M. The scattering of light and other electromagnetic radiation[M]. New York: Academic Press, 1969.

[8] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York: Wiley, 1983.

[9] XU T T, WANG C A. Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process[J]. Mater Des, 2016, 91(5): 242-247.

[10] LICHTNER A, ROUSSEL D, JAUFFRES D, et al. Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics[J]. J Am Ceram Soc, 2016, 99(3): 979-987.

[11] BOLIVAR P H, BRUCHERSEIFER M, RIVAS J G, et al. Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies[J]. IEEE Trans Microw Theory Tech, 2003, 51(4): 1062-1066.

[12] FU X J, GUO Y S, ZHOU J. Terahertz optical parameters and lattice vibration-induced resonance of Er3+-doped Y3Al5O12 crystal[J]. J Electromagn Waves Appl, 2013, 27(14): 1792-1799.

[13] RUAN X X, CHAN C H. Terahertz free-space dielectric property measurements using time- and frequency-domain setups[J]. Int J RF Microw Comput Aided Eng, 2019, 29(9): e21839.

[14] GUO R, WANG C A, YANG A K. Effects of pore size and orientation on dielectric and piezoelectric properties of 1-3 type porous PZT ceramics[J]. J Eur Ceram Soc, 2011, 31(4): 605-609.

[15] FUKUURA I, ASANO T. Fabrication and properties of some oxide ceramics: Alumina, mullite, and zirconia[J]. Elsevier Sci Publishing Co, Inc, Fine Ceram, 1988: 165-174.

[16] GIBSON L J, ASHBY M F. Cellular solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1997.

[17] STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: A review[J]. J Am Ceram Soc, 2006, 89(6): 1771-1789.

[18] 孙目珍. 电介质物理基础[M]. 广州: 华南理工大学出版社, 2000.

[19] KINGERY W D, BOWEN H K, UHLMANN D R. Introduction to ceramics[M]. New York: Wiley, 1976.

[20] NIKLASSON G A, GRANQVIST C G, HUNDERI O. Effective medium models for the optical properties of inhomogeneous materials[J]. Appl Opt, 1981, 20(1): 26-30.

[21] GARNETT J C M. Colours in metal glasses, in metallic films, and in metallic solutions. II[J]. Philos T Roy Soc A, 1906, 205: 237-288.

[22] NEELAKANTA P S. Handbook of electromagnetic materials: Monolithic and composite versions and their applications[M]. Boca Raton, FL: Research Studies Press, 2003.

[23] WING Z N, WANG B, HALLORAN J W. Permittivity of porous titanate dielectrics[J]. J Am Ceram Soc, 2006, 89(12): 3696-3700.

陈雨谷, 郭蔚嘉, 马志宇, 卢雨田, 岳振星. 面向6G应用的超低介电常数定向通孔Al2O3陶瓷[J]. 硅酸盐学报, 2023, 51(4): 859. CHEN Yugu, GUO Weijia, MA Zhiyu, LU Yutian, YUE Zhenxing. Porous Alumina Ceramics with Ultra-Low Dielectric Constant and Directional Pore Channels for 6G Telecommunication Applications[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 859.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!