光子学报, 2019, 48 (2): 0223002, 网络出版: 2019-03-23   

基于表面等离子激元的凸环结构金属-介质-金属滤波器设计

Design on the Convex Ring MIM Structure Filter Based on Surface Plasmon Polaritons
作者单位
兰州大学 信息科学与工程学院 光电子与电磁信息研究所, 兰州 730000
摘要
利用边界耦合的方法构造了金属-介质-金属结构滤波器, 该结构由一个凸环谐振腔与一个波导管耦合而成.通过有限元法数值仿真得到了该凸环腔体波导结构的磁场分布图、透射谱线和谐振波长分布, 分析了各结构参量对滤波器传输特性的影响.结果表明, 所提出的凸环滤波器具有透射峰窄, 谱线平滑等特点, 且阻带透射率最低可达0.001, 通带透射率最高可达0.977.增大结构参量h2和neff时,相应的透射谱会发生明显的红移, 增大结构参量L1时, 透射谱几乎无变化.对结构参量进行调整和优化, 相应的谐振波长可分布在第一通信窗口(850 nm)和第三通信窗口(1 550 nm)附近, 能够很好地运用于光通信中.
Abstract
A novel Metal-Insulator-Metal (MIM) structure filter was constructed by using the boundary-coupled method. The structure consists of a convex ring resonator and a waveguide. The magnetic field distribution, transmission spectra and resonance wavelength distribution of the convex ring cavity waveguide structure were obtained by Finite Element Method (FEM) numerical simulation. The influence of various structural parameters on the transmission characteristics of the filter is analyzed in detail.The results show that the proposed convex ring filter has narrow transmission peaks, smooth transmission spectra and other characteristics, and the minimum stopband transmission rate can reach 0.001, and the passband transmittance can reach 0.977. When the structural parameter h2 and neffis increased, the corresponding transmission spectrum undergoes a significant red shift. When the structural parameter L1 is increased, the transmission spectrum hardly changes. By adjusting and optimizing various structural parameters of the structure, the resonance wavelengths can distribute in the vicinity of 850 nm (the first communication window) and 1 550 nm (the third communication window), and can be well used in communications.
参考文献

[1] LI Bo-xun, LI Hong-jian, ZENG Li-li, et al. Tunable filter and optical buffer based on dual plasmonic ring resonstors[J]. Journal of Modern Optics, 2015, 62 (3): 186-194.

[2] NEUTENS P, LAGAE L, BORGHS G, et al. Plasmon filters and resonators in metal-insulator-metal waveguides[J]. Optics Express, 2012, 20 (4): 34080-3423.

[3] CHANG Chia-ming, SOLGAARD O. Fano resonances in integrated silicon Bragg reflectors for sensing applications[J].Optics Express, 2013, 21 (22): 27209-27218

[4] HAJEBIFARD A, BERINI P. Fano resonances in plasmonic heptamer nano-hole arrays[J]. Optics Express, 2017, 25(16): 18566-18580.

[5] YANG Bao-jia, ZHOU Yong-jin.Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides[J]. Journal of Modern Optics. 2016, 63 (9): 874-880.

[6] AZAR MTH, ZAVVARI M, ARASHMEHR A, et al. Design of a high performance metal-insulator-metal plasmonic demultiplexer[J]. Nanophotonics, 2017, 11(2): 026002.

[7] WANG Guo-xin, LU Hua, LIU Xue-ming, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

[8] CHEN Zhao, YU Li, WANG Lu-lu, et al. High-resolution compact plasmonic wavelength demultiplexers based on cascading square resonators[J]. Chinese Physics Letters, 2013, 30(5): 054212.

[9] ZHANG Zhao, SHI Feng-hua,CHEN Yi-hang. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

[10] YUN Bin-feng, HU Guo-hua, CUI Yi-ping. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity[J]. Plasmonics, 2013, 8(2): 267-275.

[11] SONG Ci, QU Shi-nian, WANG Ji-cheng, et al. Plasmonic tunable filter based on trapezoid resonator waveguide[J]. Journal of Modern Optics, 2015, 62(17): 1400-1404.

[12] 王志爽, 张冠茂, 刘海瑞, 等. 基于表面等离子激元的口径耦合多功能非对称半圆腔滤波器设计[J].光子学报, 2018, 47 (4) : 0423003.

    WANG Zhi-shuang, ZHANG Guan-mao, LIU Hai-rui,et al. Design of the aperture coupled multi-functional asymmetric semi-circular cavity filter based on surface plasmon polaritons[J]. Acta Photonica Sinica, 2018, 47(4): 0423003.

[13] YUN Bin-feng, HU Guo-hua, CUI Yi-ping. Systematical research on the plasmon-induced transparency in coupled plasmonic resonators[J]. Optics Communications, 2013, 305(3): 17-22.

[14] YUN Bin-feng, HU Guo-hua, CUI Yi-ping. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D Applied Physics, 2012, 43(38): 385102.

[15] ZHAN Shi-ping, LI Hong-jian, CAO Guang-tao, et al. Theoretical analysis and applications on nano-block loaded rectangular ring[J]. Journal of the Optical Society of America A, 2014, 31(10): 2263-2267.

[16] SETAYESH A, MIRNAZIRY S R, ABRISHAMIAN M S. Numerical investigation of tunable band-pass\\band-stop plasmonic filters with hollow-core circular ring resonator[J]. Optical Society of Korea, 2011, 15(1): 82-89.

[17] MIRNAZIRY S R, WOLFF C, STEEL M J, et al. Lasing in ring resonators by stimulated Brillouin scattering in the presence of nonlinear loss[J]. Optics Express, 2017, 25(20): 23619-23633.

[18] ZHENG Gai-ge, SU Wei, CHEN Yun-yun, et al. Band-stop filters based on a coupled circular ring meter-insulator-mental resonator containing nonlinear material[J]. Optics, 2012, 14(5): 651-658.

[19] YUN Bin-feng, ZHANG Ruo-hu, HU Guo-hua, et al. Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators[J]. Plasmonics, 2016, 11(4): 1157-1162.

[20] LIU Xia, TIAN Jin-ping,YANG Rong-cao. Surface plasmon polariton based metal-insulator-metal filter including two face-to-face concentric semi-rings with different radii[J]. Journal of Optical Technology, 2017, 84(9): 588-592.

[21] YE Long-fang, ZHANG Wei, OFORI-OKAI B K, et al. Super subwavelength guiding and rejecting of terahertz spoof SPPs enabled by planar plasmonic waveguides and notch filters based on spiral-shaped units[J]. Journal of Lightwave Technology, 2018, 36(20): 4988-4994.

[22] ZAVVARI M, AZAR M T H, ARASHMEHR A. Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure[J]. Journal of Modern Optics, 2017, 64(20): 2221-2227.

[23] HAN Zhang-hua.Ultra compact plasmonic racetrack resonators in metal-insulator-metal waveguides[J]. Photonics and Nanostructures-Fundamentals and Applications, 2010, 8(3): 172-176.

[24] GUO Ying-hua, YAN Lian-shan, PAN Wei,et al. Characteristics of plasmonic filters with a notch located along rectangular resonators[J]. Plasmonics, 2013, 8(2): 167-171.

[25] CAO Guang-tao, LI Hong-jian, DENG Yan, et al. Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity [J]. Plasmonics, 2014, 9(5): 1163-1169.

[26] PENG Xiao, LI Hong-jian,WU Cai-ni, et al. Research on transmission characteristics of aperture-coupled square-ring resonator based filter[J]. Optics Commications, 2013, 294(5): 368-371.

[27] ZHU Jia-hu, WANG Qi-jie, HUANG Xu-guang,et al. A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide[J]. IEEE Transactions on Nanotechnology, 2011, 10(6): 1371-1376.

[28] SHI Song-song, WEI Zhong-chao, LU Zhi-yang,et al. Enhanced plasmonic band-pass filter with symmetric dual side-coupled nanodisk resonators[J]. Journal of Applied Physics, 2015, 118(14): 143103.

闫云菲, 张冠茂, 乔利涛, 范观平. 基于表面等离子激元的凸环结构金属-介质-金属滤波器设计[J]. 光子学报, 2019, 48(2): 0223002. YAN Yun-fei, ZHANG Guan-mao, QIAO Li-tao, FAN Guan-ping. Design on the Convex Ring MIM Structure Filter Based on Surface Plasmon Polaritons[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0223002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!