人工晶体学报, 2023, 52 (4): 584, 网络出版: 2023-06-11  

坩埚下降法生长的大尺寸BaF2:Y闪烁晶体的闪烁性能及辐照损伤研究

Scintillation Properties and Irradiation Damage of Large Size BaF2:Y Scintillation Crystals Grown by Bridgman Method
作者单位
1 北京玻璃研究院有限公司, 北京 101111
2 北京首量科技股份有限公司, 北京 101111
摘要
本文使用垂直坩埚下降法制备了40 mm×40 mm×350 mm的BaF2:5%Y(摩尔分数)晶体, 并对晶体样品进行了掺杂含量、闪烁性能、光学性能和辐照损伤的研究。距离籽晶端0~300 mm范围内的Y3+掺杂浓度(摩尔分数)为5.1%±0.9%。晶体样品的平均光输出为2 100 ph/MeV, 在662 keV处的最优能量分辨率为10.1%。经60Co放射源辐照累积剂量1 Mrad后, 样品在波长220 nm处的透过率由辐照前的87.3%下降至83.5%, 在波长300 nm处的透过率由91.8%下降至89.9%。BaF2:Y晶体的抗辐照性能差于BaF2晶体, 经过累积剂量辐照后, BaF2:Y晶体对波长300 nm光的吸收明显增强。
Abstract
The 40 mm×40 mm×350 mm BaF2:5%Y (mole fraction) crystals were grown by vertical Bridgman method. The doping content, scintillation properties, optical properties and irradiation damage of crystal samples were studied. The Y3+doping concentration (mole fraction) is 5.1%±0.9% within the range from 0 to 300 mm from seed end. The average light output of crystal sample is 2 100 ph/MeV, and the optimal energy resolution at 662 keV is 10.1%. After 60Co source was used to irradiate the sample with an accumulated dose of 1 Mrad, the transmittance of the sample at 220 nm wavelength decreases from 87.3% before irradiation to 83.5%, the transmittance at 300 nm wavelength decreases from 91.8% to 89.9%. The anti-irradiation performance of BaF2:Y crystal is worse than that of BaF2 crystal. After the accumulative dose irradiation, the absorption of BaF2:Y crystal to 300 nm light is significantly enhanced.
参考文献

[1] VAN EIJK C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60/61: 936-941.

[2] RODNYI P, GARIBIN E, VENEVTSEV I, et al. The application of barium fluoride luminescence: challenges and prospects[J]. St Petersburg Polytechnical State University Journal: Physics and Mathematics, 2019, 12(1): 9-24.

[3] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride-inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176.

[4] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Development study of a new gamma camera[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 271-276.

[5] FARUKHI M R, SWINEHART C F. Barium fluoride as a gamma ray and charged particle detector[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 200-204.

[6] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Photoelectron production in BaF2-TMAE detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 259(3): 586-588.

[7] ZHU R Y. Barium fluoride crystals for precision EMC at SSC[M]//HALE P. Supercollider 5. Boston, MA: Springer, 1994: 411-414.

[8] ZHU R Y. Crystal calorimeters in the next decade[J]. Physics Procedia, 2012, 37: 372-383.

[9] TSCHIRHART R. The Mu2e experiment at Fermilab[J]. Nuclear Physics B - Proceedings Supplements, 2011, 210/211: 245-248.

[10] WOODY C L, LEVY P W, KIERSTEAD J A. Slow component suppression and radiation damage in doped BaF2/crystals[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 536-542.

[11] 郑嘉茜, 陈俊锋, 李 翔, 等. 掺杂抑制氟化钡晶体慢闪烁成分研究进展[J]. 人工晶体学报, 2022, 51(6): 951-964.

[12] SPRINGIS M, VEISPALS A, KULIS P, et al. Optical and spectral properties of the Cd-containing BaF2[C]. SCINT95: Proc Int Conf on Inorganic Scintillators and their Application, 1995:403-406.

[13] RADZHABOV E, MYSOVSKY A, EGRANOV A, et al. Cadmium centres in alkaline-earth fluoride crystals[J]. Physica Status Solidi (c), 2005, 2(1): 388-391.

[14] NESTERKINA V, SHIRAN N, GEKTIN A, et al. The Lu-doping effect on the emission and the coloration of pure and Ce-doped BaF2[J]. Radiation Measurements, 2007, 42(4/5): 819-822.

[15] CHEN J F, YANG F, ZHANG L Y, et al. Slow scintillation suppression in yttrium doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2147-2151.

[16] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860.

[17] PENG C, ZHANG K, YANG L, et al. Investigation on the fast component light yield of BaF2:Y crystal[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2083-2088.

[18] ZHANG L Y, HU C, OYANG J, et al. Spectral response of UV photodetectors for Barium fluoride crystal readout[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 958-964.

[19] YANG F, ZHANG L Y, ZHU R Y. Gamma-ray induced radiation damage up to 340 Mrad in various scintillation crystals[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 612-619.

[20] MA D A, ZHU R Y. Light attenuation length of Barium fluoride crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2/3): 422-424.

侯越云, 刘建强, 杨蕾, 闫晋力, 张明荣, 刘晓阳. 坩埚下降法生长的大尺寸BaF2:Y闪烁晶体的闪烁性能及辐照损伤研究[J]. 人工晶体学报, 2023, 52(4): 584. HOU Yueyun, LIU Jianqiang, YANG Lei, YAN Jinli, ZHANG Mingrong, LIU Xiaoyang. Scintillation Properties and Irradiation Damage of Large Size BaF2:Y Scintillation Crystals Grown by Bridgman Method[J]. Journal of Synthetic Crystals, 2023, 52(4): 584.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!