激光生物学报, 2021, 30 (1): 43, 网络出版: 2021-08-23   

g-C3N4@C-TiO2纳米颗粒增强可见光驱动的体外光动力灭活HL60细胞的试验研究

An Experimental Study Based on g-C3N4@C-TiO2 Nanoparticles to Enhance Visible-light-driven Photodynamic Therapy for HL60 Cells in vitro
作者单位
华南师范大学物理与电信工程学院, 广州 510006
摘要
通过化学气相沉积法制备了g-C3N4@C-TiO2纳米颗粒, 利用X射线衍射(XRD)、荧光光谱(FS)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、能谱(EDS)等对纳米颗粒进行表征。分别研究了暗室条件及光照条件下g-C3N4@C-TiO2纳米颗粒对HL60细胞的作用效果。采用CCK-8法探究了一系列质量浓度梯度的纳米颗粒处理HL60细胞后的存活率, 并且通过荧光探针标记技术检测细胞内活性氧水平。试验结果表明, 在C-TiO2表面包裹g-C3N4, 可将TiO2可吸收的光波长范围拓展至可见光波段。制备的g-C3N4@C-TiO2粒径在10~20 nm, 满足其进入细胞的尺寸要求。暗毒性试验表明g-C3N4@C-TiO2纳米颗粒在暗室条件下对细胞的毒性较小, 证明了其具有良好的生物相容性。同时, 与TiO2和C-TiO2纳米颗粒处理组相比, g-C3N4@C-TiO2处理组的光动力灭活效率高达(76.5±1.9)%, 表明其可能成为治疗白血病的潜在光敏剂。
Abstract
C-doped TiO2 nanoparticles combined with g-C3N4 were prepared by chemical vapor deposition, using X-ray diffraction, fluorescence spectroscopy, transmission electron microscopy, UV-Vis absorption spectroscopy and energy dispersive spectrometer to characterize nanoparticles. The effects of g-C3N4@C-TiO2 nanoparticles on HL60 cells in vitro were explored in dark and under light irradiation. Cell Counting Kit-8 (CCK-8) method was used to investigate the viability of HL60 cells treated with nanoparticles with a series of concentration gradients, and the level of intracellular reactive oxygen species was detected via fluorescent probe labeling technology. The experimental results showed that by modifying g-C3N4 on the surface of C-TiO2, the absorption wavelength range of TiO2 could be extended to the visible band. The particle size of g-C3N4@C-TiO2 prepared was about 10~20 nm, which met the size requirement of entering cells. Dark toxicity experiment proved that g-C3N4@C-TiO2 nanoparticles were less toxic to cells under darkroom conditions, which suggested they had good biocompatibility. Meanwhile, compared with the groups treated?with?TiO2 and C-TiO2?nanoparticles, the photocatalytic inactivation efficiency of the group treated with g-C3N4@C-TiO2 was as high as (76.5±1.9)% under light irradiation, indicating its potential as a potential photosensitizer for the treatment of leukemia.
参考文献

[1] SILLA L, DULLEY F, SABOYA R, et al. Brazilian guidelines on hematopoietic stem cell transplantation in acute myeloid leukemia[J]. European Journal of Haematology, 2017, 98(2): 177-183.

[2] STONE R M, MANDREKAR S J, SANFORD B L, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. New England Journal of Medicine, 2017, 377(5): 454-464.

[3] INOUE A, KOBAYASHI C I, SHINOHARA H, et al. Chronic myeloid leukemia stem cells and molecular target therapies for overcoming resistance and disease persistence[J]. International Journal of Hematology, 2018, 108(4): 365-370.

[4] YIN Z F, WU L, YANG H G, et al. Recent progress in biomedical applications of titanium dioxide[J]. Physical Chemistry Chemical Physics, 2013, 15(14): 4844-4858.

[5] LIU L, MIAO P, XU Y Y, et al. Study of Pt/TiO2 nanocomposite for cancer-cell treatment[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 98(3): 207-210.

[6] 薛婷, 郭文博, 梁雪影, 等. 基于CdSe掺杂锐钛矿TiO2的可见光体外灭活HL60细胞实验研究[J]. 激光生物学报, 2017, 26(3): 224-231.

[7] GEORGE S, POKHREL S, JI Z X, et al. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm[J]. Journal of the American Chemical Society, 2011, 133(29): 11270-11278.

[8] ASAHI R, MORIKAWA T, IRIE H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects[J]. Chemical Reviews, 2014, 114(19): 9824-9852.

[9] YUE X Z, YI S S, WANG R W, et al. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting[J]. Journal of Materials Chemistry A, 2017, 5(21): 10591-10598.

[10] NASERI A, SAMADI M, POURJAVADI A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J]. Journal of Materials Chemistry A, 2017, 5(45): 23406-23433.

[11] BALU S, CHEN Y L, YANG T C K, et al. Effect of ultrasound-induced hydroxylation and exfoliation on P90-TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing[J]. Ceramics International, 2020, 46(11): 18002-18018.

[12] YU B, MENG F M, KHAN M W, et al. Synthesis of hollow TiO2@g-C3N4/Co3O4 core-shell microspheres for effective photooxidation degradation of tetracycline and MO[J]. Ceramics International, 2020, 46(9): 13133-13143.

[13] HAFEEZ H Y, LAKHERA S K, BELLAMKONDA S, et al. Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity[J]. International Journal of Hydrogen Energy, 2018, 43(8): 3892-3904.

[14] WEI X B, SHAO C L, LI X H, et al. Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution[J]. Nanoscale, 2016, 8(21): 11034-11043.

[15] WANG L, WANG H, WANG Y Y, et al. Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C3N4-TiO2 composite under visible light[J]. Tetrahedron Letters, 2020, 61(23): 1-4.

[16] NASIR M S, YANG G R, AYUB I, et al. Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(27): 13994-14005.

[17] LI P, ZHANG X X, QIU L F, et al. MOF-derived TiO2 modified with g-C3N4 nanosheets for enhanced visible-light photocatalytic performance[J]. New Journal of Chemistry, 2020, 44(17): 6958-6964.

[18] SUTAR R S, BARKUL R P, DELEKAR S D, et al. Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites[J]. Arabian Journal of Chemistry, 2020, 13(4): 4966-4977.

[19] 熊建文, 肖化, 张镇西. MTT法和CCK-8法检测细胞活性之测试条件比较[J]. 激光生物学报, 2007, 16(5): 559-562.

[20] 李莉莉, 郑泽鳞, 黄康强, 等. 基于ALA-PDT的HL60细胞中活性氧的检测[J]. 光电子, 2011, 1(2): 11-15.

[21] 蒋昕鹏, 戴志飞. 光动力活性氧的研究进展[J]. 科学通报, 2018, 63(18): 1783-1802.

[22] YANG B W, CHEN Y, SHI J L. Reactive oxygen species (ROS)-based nanomedicine[J]. Chemical Reviews, 2019, 119(8): 4881-4985.

[23] ANCONA A, DUMONTEL B, GARINO N, et al. Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells[J]. Nanomaterials, 2018, 8(3): 1-15.

[24] LI X B, XIONG J, XU Y, et al. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40(3): 424-433.

[25] YANG D, YANG G X, SUN Q Q, et al. Carbon-dot-decorated TiO2 nanotubes toward photodynamic therapy based on water-splitting mechanism[J]. Advanced Healthcare Materials, 2018, 7(10): 1-11.

[26] 鲁丽, 孙广宇, 陈丽, 等. 基于5-ALA-TS-FA体外光动力疗法灭活HL60细胞实验研究[J]. 激光生物学报, 2018, 27(1): 1-9.

[27] JIAO X D, ZHANG W, ZHANG L, et al. Rational design of oxygen deficient TiO2-x nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer[J]. Nanoscale, 2020, 12(3): 1707-1718.

[28] ZHOU T, HU R, WANG L, et al. An AIE-active conjugated polymer with high ROS-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections[J]. Angewandte Chemie-International Edition, 2020, 59(25): 9952-9956.

[29] SHI Z J, ZHANG K, ZADA S, et al. Upconversion nanoparticle-induced multimode photodynamic therapy based on a metal-organic framework/titanium dioxide nanocomposite[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12600-12608.

[30] SHEN T T, HU X X, LIU Y C, et al. Specific core-satellite nanocarriers for enhanced intracellular ROS generation and synergistic photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5403-5412.

[31] ZOU Y J, SHI J W, MA D D, et al. Fabrication of g-C3N4/Au/C-TiO2 hollow structures as visible-light-driven Z-scheme photocatalysts with enhanced photocatalytic H2 evolution[J]. Chemcathem, 2017, 9(19): 3752-3761.

[32] ATTIA A B E, OH P, YANG C, et al. Insights into EPR effect versus lectin-mediated targeted delivery: biodegradable polycarbonate micellar nanoparticles with and without galactose surface decoration[J]. Small, 2014, 10(21): 4281-4286.

方杰, 王健, 张启云, 李淼淼, 肖睦沧, 艾保全, 熊建文. g-C3N4@C-TiO2纳米颗粒增强可见光驱动的体外光动力灭活HL60细胞的试验研究[J]. 激光生物学报, 2021, 30(1): 43. FANG Jie, WANG Jian, ZHANG Qiyun, LI Miaomiao, XIAO Mucang, AI Baoquan, XIONG Jianwen. An Experimental Study Based on g-C3N4@C-TiO2 Nanoparticles to Enhance Visible-light-driven Photodynamic Therapy for HL60 Cells in vitro[J]. Acta Laser Biology Sinica, 2021, 30(1): 43.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!