中国激光, 2024, 51 (16): 1602403, 网络出版: 2024-04-02  

大曲率低损耗弯曲波导的飞秒激光直写【增强内容出版】

Femtosecond Laser Direct Writing of Bent Waveguides with High Curvature and Low Loss
作者单位
吉林大学电子科学与工程学院,吉林 长春 130012
摘要
飞秒激光直写光波导是实现三维光子集成芯片(PIC)的重要技术手段。PIC集成度的提升受弯曲波导曲率半径的限制。为了实现大曲率低损耗弯曲波导的飞秒激光直写,提出多次激光修饰增强波导芯层与包层折射率对比度的方法来优化芯层的横截面折射率分布。在20 mm曲率半径下,实现S型弯曲波导低至0.64 dB/cm的弯曲损耗。该方法在降低弯曲波导损耗方面拥有巨大潜力,对于提升PIC的集成度具有重要意义。
Abstract
Objective

Femtosecond laser direct writing (FLDW) has been widely used in material processing to improve material performance due to its high flexibility, true three-dimensional capability, and wide applicability to various materials. Photonic integrated circuits (PICs) constructed by FLDW are advantageous in terms of high stability and strong resistance to interference, making them suitable for applications in optical interconnects, biosensing, quantum communication, and quantum simulation. With the continuous expansion and enrichment of these applications, miniaturization of photonic devices has become an inevitable trend. However, the integration density of PICs is significantly limited by the loss caused by large curvature waveguides (including 90°bending, 180° bending, and S-shaped bending) due to the low refractive index contrast of waveguides produced by single-shot FLDW. Although various methods have been reported to optimize the bending loss of large curvature waveguides, none of them can simultaneously meet the requirements of high integration density and wide applicability range. In this work, we employ a method of multiple laser modifications to enhance the refractive index contrast between the core and cladding of waveguides, optimize the cross-sectional refractive index distribution of the core, and achieve a bending loss as low as 0.64 dB/cm for S-shaped bent waveguides with a radius of 20 mm. Since the modification lines are written inside the waveguide and completely consistent with the bending shape and formation of the waveguide, this method possesses the characteristics of high integration density and wide applicability range, providing an important basis for the miniaturization of PICs.

Methods

This paper analyzes the causes of bending loss in waveguides and proposes a method of multiple laser modifications to enhance the refractive index contrast between the core and cladding of waveguides, optimizing the cross-sectional refractive index distribution of the core. Then, the mode field distribution within the bent waveguide and the bending loss of the bent waveguide before and after modification are simulated using professional optical waveguide simulation software, COMSOL and Rsoft, respectively. Finally, S-shaped bent waveguides and modification lines are written in alkaline-earth borosilicate glass using a 1030 nm femtosecond laser. By adjusting the scanning order, center spacing, writing power, angle, density, writing mode, and number of layers of both the waveguide and the modification lines, the mode conversion loss between the straight waveguide and the bent waveguide is effectively reduced, as well as the radiation loss of the bent waveguide. In addition, the central wavelength of the testing laser is set to 808 nm. After adjusting the laser to vertical polarization using a polarization controller, the laser is coupled into the waveguide through a polarization-maintaining fiber. The output light is received by a power meter after removing the scattered light using an iris filter.

Results and Discussions

In the simulation part, the bending loss of the modified bent waveguide is significantly reduced compared with the unmodified bent waveguide, as demonstrated by the comparison of bending losses before and after modification using Rsoft simulations (Fig.3). The waveguide parameters remain unchanged during the simulations. In the experimental section, cross-sectional microscope images of the bent waveguide before and after modification are compared (Fig.4), and it is observed that the dimensions of the two waveguides are similar, indicating that the added modification lines do not occupy any additional space outside the waveguide. In addition, we provide experimental and simulated mode field distributions before and after adding modification lines, and observe that after adding modification lines, the mode field of the bent waveguide is to some extent closer to the center of the waveguide. Subsequently, different writing orders for the modification lines and the waveguide are designed (Fig.5), and the minimum bending loss is achieved with the optimal writing order. Furthermore, considering the flexibility in writing the modification lines, experimental investigations are conducted on the center spacing between the modification lines and the waveguide, as well as the power of the modification lines (Fig.6), the density and angle of the modification lines (Fig.7), and the number of layers and writing mode of the modification lines (Fig.8). These parameters could alter the refractive index distribution of the bent waveguide cross section, thereby influencing the magnitude of bending loss. Therefore, by selecting appropriate parameter combinations, the bending loss can be minimized.

Conclusions

In this study, we employ a method of inscribing modification lines inside bent waveguides using femtosecond laser to reduce the bending loss. The power of 380 mW, the scanning speed of 40 mm/s, and the depth of 190 μm are selected as writing parameters of the waveguide. Experimental results demonstrate that at a position of 20 mm, utilizing the optimal writing order and the side-writing approach, along with the innermost modification lines positioned at a center spacing of 0.3 μm from the waveguide, a power of 300 mW, an encapsulation angle of 10°, a density of 10°, and a layer number of 2, the bending loss of the S-shaped bent waveguide could be reduced to 0.64 dB/cm. These experimental findings are consistent with the Rsoft simulation results. This method offers a more convenient and flexible option for integration in photonic chips, contributing to further improvements and advancements in their development and applications.

1 引言

飞秒激光直写(FLDW)凭借高灵活度1-3、真三维4-6以及广泛的材料适用性7-9等特点,被广泛应用于材料加工以改善材料性能。由FLDW构建的光子集成芯片(PIC)具有稳定性高、抗干扰能力强等优势,在光学互联10-11、生物传感12-13、量子通信14-15和量子模拟16等方面有重要应用。随着这些应用的不断丰富和拓展,光子器件小型化已成必然趋势。然而,目前飞秒激光直写的波导在小曲率半径下存在大弯曲损耗的问题17-18,PIC的集成度受到大曲率波导弯曲(包括90°弯曲、180°弯曲和S形弯曲)损耗的显著限制。因此,优化大曲率波导的弯曲损耗是至关重要的。

国内外已有多种优化方法被陆续报道。2013年,Arriola等17利用退火技术擦去由飞秒激光直写的大型多模波导的低折射率外环,提高波导芯层与包层的折射率对比度(简称波导的折射率对比度),在碱土硼硅铝酸盐玻璃中实现1550 nm波长下的单模传输和16.6 mm曲率半径下约0.37 dB/cm的弯曲损耗。2017年,Pätzold等19使用飞秒激光在弯曲波导外部写入多对等距的Ⅱ类轨迹(扫描轨迹处折射率降低),利用扫描轨迹产生的应力增大波导的折射率对比度,在聚甲基丙烯酸甲酯(PMMA)中实现638 nm波长下的单模传输和20 mm曲率半径下小于1 dB/cm的辐射损耗。2018年,Liu等18使用飞秒激光在弯曲波导外部写入一系列Ⅰ类轨迹(扫描轨迹处折射率升高)并形成“墙壁”,利用“墙壁”产生的应力增大波导的折射率对比度,在熔融石英中实现633 nm波长下的单模传输和15 mm曲率半径下约2.29 dB/cm的弯曲损耗。2021年,Lee等20发现使用飞秒激光在熔融石英中进行单向等距扫描可以诱导强烈的不对称应力模式并产生微裂纹。该微裂纹被用于增大弯曲波导外缘两侧的折射率对比度,实现1550 nm波长下的单模传输和10 mm曲率半径下约1 dB/cm的弯曲损耗(含传输损耗)。上述方法在降低弯曲波导的弯曲损耗方面取得了不同程度的成果,但也存在相应的问题。例如,文献[17]中的退火技术对熔融石英中的波导不起作用21;文献[18-19]中的外部修饰方法会增大弯曲波导的体积,不利于提升PIC的集成度;文献[20]中的微裂纹只能出现在波导的某一侧,对于S型弯曲并不适用,而且这种微裂纹是否能出现在其他材料中还有待考证。因此,亟需一种集成度高且适用范围广的弯曲损耗降低方法。

本文使用比波导直写能量更低的飞秒激光修饰波导内部,通过调整波导和修饰线的扫描顺序、中心间隔以及修饰线的写入功率、角度、密度、写入方式和层数,有效降低直波导与弯曲波导之间的模式转换损耗,并减少弯曲波导的辐射损耗。此外,由于修饰线被写入波导内部,并且与波导在弯曲形状和形成方式上完全一致,因此该方法具备高度集成和广泛适用的特点,为PIC的小型化提供了重要依据。

2 基本原理和仿真验证

2.1 基本原理

波导弯曲部分的损耗可分为传输损耗、辐射损耗和模式转换损耗三部分22。其中,模式转换损耗是由于波导传播常数的改变所引起的;而对于曲率较大的弯曲波导,主要的辐射损耗是由于波导的弯曲使光无法完全被限制在波导中而产生的。本文讨论的弯曲损耗不包括传输损耗。

图1(a)为直波导和圆弧形弯曲波导示意图,X轴经过圆心CZ轴始终与圆弧型弯曲波导的轴心线相切。假设圆弧形弯曲波导的半径为R,波导芯层的半径为rcore。经保角变换23后,其等效直波导的折射率分布为

ne2(r,φ)=n02(r)+2rn1sinφR

式中:ne(r,φ)表示等效直波导的折射率分布;r表示某一点到圆对称弯曲波导中心轴的距离;φ表示该距离方向(由中心轴指向这一点)与Y轴正方向的夹角;n0(r)表示圆对称弯曲波导的折射率分布;n1为波导芯层的折射率。

图 1. 直波导和圆弧形弯曲波导的俯视图和模拟模场分布。(a)直波导和圆弧形弯曲波导的俯视图;(b)直波导的模拟模场分布;(c)圆弧形弯曲波导的模拟模场分布

Fig. 1. Top view and simulated mode field distribution of straight waveguide and circular-arc bent waveguide. (a) Top view of straight waveguide and circular-arc bent waveguide; (b) simulated mode field distribution of straight waveguide; (c) simulated mode field distribution of circular-arc bent waveguide

下载图片 查看所有图片

式(1)仅在rcoreR时有效。考虑X-Z平面的折射率分布,式(1)可简化为

ne2(X)=n02(X)+2n1XR

式中:n0(X)ne(X)分别为圆对称弯曲波导和其等效直波导沿X方向的折射率分布。

图1(b)和图1(c)分别为使用COMSOL模拟的直波导和弯曲波导横截面的模场分布。采用具有阶跃折射率变化的同心圆结构模拟波导横截面,取rcore=4 μm,波导包层的半径rclad=15 μm,输入波长λ=808 nm。参考实验测试数值,设置波导包层折射率n2=1.505,波导的折射率对比度n1-n2=2.5×10-3。模拟直波导时,设置为二维组件。波导的芯层和包层均根据物理场控制网格进行常规填充,直波导的模式搜索基准值为n1。模拟弯曲波导时,设置为二维轴对称组件,取R=20 mm,并在包层周围添加厚度为10 μm的完美匹配层(PML)。弯曲波导的芯层和包层网格设置与直波导一致,PML采用映射下的分布式网格填充,分布单元数为5。弯曲波导的模式搜索基准值为R×n1,PML内的典型波长为λ PML=λ/n22-Rn1/R+rclad2,其余选项为默认值。图1(c)中,δ1为波导弯曲引起的模场中心偏移量。

图2(a)为弯曲波导在未添加修饰线时保角变换前后的折射率分布。其中,i1为等效折射率的尖峰到弯曲波导轴心的横向距离。由图1(c)和图2(a)可知,波导弯曲引起光场强度分布的外移,因此在直波导和弯曲波导间存在模式转换损耗。模式转换损耗可以由直波导模式和等效直波导模式的耦合系数24计算得到。i1越大,δ1越大,两模式的耦合系数越小,模式转换损耗越大。此外,由于飞秒激光在许多常见光电材料中直写的波导的横截面折射率为近高斯分布25-29,因此光场强度分布的外移也会导致辐射损耗增加。

图 2. 弯曲波导在保角变换前后的折射率分布、n1-n2αr的影响以及修饰线的写入策略示意图。(a)未添加修饰线时保角变换前后的折射率分布;(b)αrn1-n2的变化情况;(c)修饰线的写入策略示意图;(d)添加修饰线时保角变换前后的折射率分布

Fig. 2. Schematic diagram of refractive index distribution of bent waveguides before and after conformal transformation, influence of n1-n2 on αr, and writing strategy of modification lines. (a) Refractive index distribution before and after conformal transformation without modification lines; (b) change of αr with n1-n2; (c) schematic diagram of writing strategy for modification lines; (d) refractive index distribution before and after conformal transformation when adding modification lines

下载图片 查看所有图片

对于弯曲平板波导,当波导宽度远小于曲率半径(rcoreR)时,可以用直波导相应区域的场分布去代替弯曲波导外侧附近的场分布,于是有弯曲波导的辐射损耗系数公式30

αr=p2k12exp(2p2rcore-U)k02(n12-n22)β(2rcore+1p2+1p0)

式中:p2=p0=(β2-n22k02)1/2U=2p23R/3β2k1=(n12k02-β2)1/2k0为自由空间中光的波数,k0=2π/λ0λ0为自由空间中光的波长;β为波导中导模的传播常数,β=k0n1sinγγ为光线在平板波导中发生全反射时的反射角。

图2(b)为弯曲波导辐射损耗系数αrn1-n2的变化情况。图中,取rcore=2 μm,R=20 mm,n2=1.505,λ=808 nm。同时,为满足导模条件n2k0<β<n1k0,取γ=87°。由图2(b)可知,αrn1-n2的增大而减小,即增大弯曲波导的折射率对比度可以减小其辐射损耗。

根据上述分析,本文提出一种在弯曲波导内部写入修饰线的方法,用以减小弯曲波导的弯曲损耗。图2(c)为修饰线的写入策略示意图。其中,右上和左下分别为S型弯曲波导的俯视图和横截面视图。横截面视图中,半径较大的圆表示波导,较小的一系列圆表示修饰线,成对的修饰线关于竖直方向中心线呈轴对称分布,dis为波导与修饰线的中心间隔(简称中心间隔),θ为波导中心和距水平方向最远的修饰线中心的连线与水平方向所夹的锐角(简称修饰线包覆角度),σ为相邻修饰线中心分别与波导中心连线时两线所夹的锐角(简称修饰线密度)。

图2(d)为弯曲波导在添加修饰线时保角变换前后的折射率分布[分别用n0(1)(X)ne(1)(X)表示]。图中,n1(1)表示修饰线区域的折射率。由图2(d)可知,添加修饰线后波导等效折射率的最高尖峰向波导轴心靠近(i2<i1),使弯曲波导中光场的偏移量减小;同时,弯曲波导轴心附近的折射率增加(n1(1)>n1),使弯曲波导的折射率对比度增大。

综上所述,在弯曲波导中写入修饰线能够降低直波导与弯曲波导间的模式转换损耗以及弯曲波导的辐射损耗。

2.2 仿真验证

为进一步证明上述方法的可行性,使用Rsoft软件模拟S型弯曲波导在添加修饰线前后的横截面折射率分布和弯曲损耗αb。弯曲损耗定义为

αb=αiL

式中:αi为弯曲波导的插入损耗;L为弯曲波导轴心线的长度。

αi的计算公式为

αi=-10lg(PoutPin)

式中:PinPout分别为弯曲波导输入端和输出端的光功率。

Rsoft软件模拟结果如图3所示。图3(a)~图3(d)中R=20 mm。模拟时,取首端直波导长度为525 μm,末端直波导的长度为50 μm,首末直波导之间的距离为58.5 μm。取λ=808 nm,实验材料在该波长下的折射率为1.505。设置波导相对于材料的折射率改变量为2.5×10-3,修饰线相对于波导的折射率改变量为8×10-4。按照实验测试数值,设置波导直径为4 μm,修饰线直径为1.2 μm。此外,θσ均设置为10°dis为1 μm。由图3(b)、图3(d)和图3(e)可知,添加修饰线后,大曲率弯曲波导的弯曲损耗显著降低。

图 3. S型弯曲波导的模拟结果。(a),(b)未添加修饰线时弯曲波导的横截面折射率分布和弯曲损耗模拟图;(c),(d)添加修饰线时弯曲波导的横截面折射率分布和弯曲损耗模拟图;(e)添加和未添加修饰线时弯曲波导的弯曲损耗与曲率半径的关系

Fig. 3. Simulation results of S-shaped bent waveguide. (a),(b) Cross-sectional refractive index distribution and bending loss simulation diagrams of bent waveguide without modification lines; (c),(d) cross-sectional refractive index distribution and bending loss simulation diagrams of bent waveguide with modification lines; (e) relationship between bending loss and curvature radius of bent waveguides with and without modification lines

下载图片 查看所有图片

3 实验结果及分析

本文使用的激光器为Light Conversion公司生产的Yb∶KGW高重复频率飞秒激光器(CARBIDE,CB-5),输出激光的最大功率为5 W,中心波长为1030 nm,重复频率可调(60 kHz~1 MHz),脉宽可调(290 fs~10 ps),最大单脉冲能量83 µJ。加工样品为碱土硼铝硅酸盐玻璃(Corning Eagle XG,尺寸为25 mm×25 mm×1 mm),搭载于Aerotech公司的三维气浮平台,平台的最大运行速度、分辨率和重复定位精度分别为300 mm/s、2.5 nm和50 nm。使用空间光调制器(SLM)整形方法31直写具有圆形截面的波导和修饰线。测试波导的弯曲损耗时,使用中心波长为808 nm的半导体激光器产生激光。激光器输出的激光被偏振控制器调整为竖直偏振后,经保偏光纤入射到波导中;接着,波导输出的激光被虹膜滤光片滤去散射光,并由功率计接收。

本文主要的实验参数如下所述。首先,波导的直写速度和功率分别固定为40 mm/s和380 mW,且位于样品表面以下190 µm,该参数下直波导具有最小的传输损耗。其次,弯曲波导首尾直波导间的距离被固定为58.5 μm,远小于L,故式(4)中的αi可近似为波导有无弯曲部分的插入损耗之差。最后,考虑到写入修饰线的灵活性,设置的可变参数组合为:波导的曲率半径R、波导与修饰线的中心间隔dis、修饰线的写入功率P2、包覆角度θ、密度σ和层数m

图4为添加修饰线前后弯曲波导的横截面光学显微镜照片和模场分布图片。对比图4(a1)和图4(b1),可以看到修饰线仅对波导横截面的形貌进行修改,并未占用额外的空间,证明上述修饰线方法具有高集成度的优点。在图4(b1)中,可变参数组合为:R=20 mm,dis=1 μm,P2=300 mW,m=1,θ=10°σ=10°。对比图4(a2)和图4(b2),以及图4(a3)和图4(b3),可以看到添加修饰线后,弯曲波导的模场一定程度上向波导中心靠拢。图中δ2表示添加修饰线前后弯曲波导模场中心的横向偏移量。

图 4. 光学显微镜照片和模场分布图片。(a1),(b1)添加修饰线前后弯曲波导的横截面光学显微镜照片;(a2),(b2)对应(a1)和(b1)的模场分布图片;(a3),(b3)添加修饰线前后弯曲波导的模拟模场分布图片

Fig. 4. Optical microscope photos and mode field distribution pictures. (a1),(b1) Cross-sectional optical microscope photos of bent waveguide before and after adding modification line, respectively; (a2),(b2) mode field distribution pictures corresponding to (a1) and (b1), respectively; (a3),(b3) simulated mode field distribution images of bent waveguide before and after adding modification line, respectively

下载图片 查看所有图片

修饰线排布紧密且被写入弯曲波导内部,因此它们的数量以及它们和波导的写入顺序都会影响弯曲波导横截面的折射率分布32,从而改变弯曲损耗的大小。根据FLDW自深而浅的直写特性,设计了不同的写入顺序,如图5(a)所示。图中,修饰线从水平面向两侧展开,修饰线的数量从1对变化到3对(实线框),虚线框表示最先写入修饰线的情况。同时,计算了不同写入顺序下波导的弯曲损耗,如图5(b)所示。通过对比顺序1、4、5和顺序2、3、6,以及顺序2和顺序3、6,发现:提前写入水平方向修饰线和仅写入水平方向修饰线都会导致较大的弯曲损耗。前者可能是因为先写入的水平修饰线将最关键的弯曲平面占据,导致波导横截面形状变差,导模泄漏严重;而后者可能是因为折射率增加的区域较小或单对修饰线引起的折射率增量不足,使部分导模泄漏。由图5(b)可知,按顺序3写入时弯曲波导有最低的弯曲损耗,故后续波导和修饰线均采用此顺序写入,即先写入水平方向以下的修饰线,再写入波导,最后写入水平方向及其以上的修饰线。在图5中,可变参数组合为:R=20 mm,dis=0.3 μm,P2=300 mW,m=1,θ=10°σ=10°

图 5. 不同的波导和修饰线写入顺序及其对应的弯曲损耗。(a)波导和修饰线的写入顺序示意图;(b)不同写入顺序下波导的弯曲损耗

Fig. 5. Different schemes of writing order of waveguide and modification lines and their corresponding bending losses. (a) Schematic diagram of writing order of waveguide and modification lines; (b) bending losses of waveguides under different writing schemes

下载图片 查看所有图片

在确定最优写入顺序之后,分别探究了各可变参数对波导弯曲损耗的影响。图6为修饰线取不同曲率半径R、写入功率P2和中心间隔dis(固定m=1,θ=10°σ=10°)时弯曲波导的弯曲损耗情况。其中,横向粗实线和细实线分别表示未添加修饰线时弯曲波导的弯曲损耗大小和测量误差。由图6可知,修饰线的写入明显降低了弯曲波导的弯曲损耗。同时发现:在波导写入功率固定时,存在一个最佳的P2dis,使其弯曲损耗最小;随着弯曲波导曲率半径的减小,最佳P2并无明显变化,但是最佳dis增大;dis较小(0.1 μm)时,波导的弯曲损耗迅速增大。第一个现象可能是因为在该P2dis下,弯曲波导外侧折射率分布最优,模式转换损耗和辐射损耗总和最小。而第二个现象可以结合式(2)图2(d)来解释。当R减小时,式(2)中2n1/R项增大,即图2(d)中虚斜线的斜率增加,导致添加修饰线后波导的最大等效折射率与波导边缘的最大等效折射率之差减小,这意味着相当一部分模式会偏移到修饰线外侧的低折射率区域,导致辐射损耗和模式耦合损耗大幅增加。由图2(d)可知,适当增大dis可以扩大这一高度差并降低弯曲损耗。最后一个现象可能是因为两侧修饰线距离过近导致波导内部结构被破坏,从而额外增加了波导弯曲部分的传输损耗,这部分传输损耗也被计算到总的弯曲损耗中。

图 6. 不同RP2dis下波导的弯曲损耗。(a)R=10 mm时弯曲损耗随P2dis的变化情况;(b)R=20 mm时弯曲损耗随P2dis的变化情况。横向粗实线和细实线分别表示未添加修饰线时弯曲波导的弯曲损耗大小和测量误差

Fig. 6. Bending losses of waveguides under different R, P2, and dis. (a) Variation of bending loss with P2 and dis when R=10 mm; (b) variation of bending loss with P2 and dis when R=20 mm. Horizontal thick solid line and thin solid lines represent magnitude of bending loss for bent waveguide without modification lines and measurement error, respectively

下载图片 查看所有图片

图7(a)为修饰线取不同曲率半径R和修饰线包覆角度θ(固定dis=0.3 μm,P2=300 mW,m=1,σ=10°)时弯曲波导的弯曲损耗情况。由图7(a)可知,包覆角度大于20°时,波导的弯曲损耗缓慢增加;包覆角度大于0°且小于20°时,存在一个最佳的包覆角度,使波导弯曲损耗最小,且这一角度几乎不随曲率半径变化。前者可能是因为在某一较小的角度内写入修饰线已经能够对导模形成最佳限制,继续写入修饰线会破坏这一最优的波导横截面折射率分布,使弯曲损耗增加。后者是由于此处波导曲率半径的变化对导模尺寸的影响较小,因此最佳包覆角度几乎不变。

图 7. 不同Rθσ下波导的弯曲损耗。(a)不同Rθ下波导的弯曲损耗;(b)不同Rσ下波导的弯曲损耗

Fig. 7. Bending losses of waveguide under different R, θ, and σ conditions. (a) Bending losses of waveguide under different R and θ conditions; (b) bending losses of waveguide under different R and σ conditions

下载图片 查看所有图片

图7(b)为修饰线取不同曲率半径R和修饰线密度σ(固定dis=0.3 μm,P2=300 mW,m=1,θ=24°)时波导的弯曲损耗情况。由图7(b)可知,当R=20 mm时,随着修饰线密度不断减小,弯曲损耗先减小后增大。当R=10 mm时,随着修饰线密度不断减小,弯曲损耗先不断减小后趋于稳定。可能是由于修饰线密度的增加使波导折射率增加的区域变大,图2(d)中修饰线的等效折射率尖峰外移,等效于dis增大。对于曲率半径较小的弯曲波导,由前面的分析可知,适当增大dis可以降低弯曲损耗;而对于曲率半径较大的弯曲波导,由图2(d)可知,添加修饰线后波导的最大等效折射率与波导边缘的最大等效折射率之差较大,导模已被良好地限制在波导中,增大dis反而会使弯曲损耗增加。

由于弯曲波导的弯曲损耗主要受其外凸侧横截面的折射率分布所影响33,因此进一步探究了只在S型弯曲波导两段圆弧的外凸侧添加修饰线时其弯曲损耗的大小。图8为修饰线取不同写入方式、曲率半径R和修饰线层数mdis(1)=0.3 μm,P2=300 mW,θ=10°σ=10°)时弯曲波导的弯曲损耗情况,此处dis(1)表示最内层修饰线与波导的中心间距。修饰线由外层向内层写入,层间距固定为0.2 μm。由图8(a)和图8(b)可知,两侧对称写入修饰线时,弯曲损耗随m的增加而增加;而仅在外侧写入修饰线时,不同的曲率半径下都存在一个最佳的m。对比图8(c)和图8(d)可知:前者可能是由于在m增加时,两侧修饰线间的应力作用愈加复杂,导致弯曲波导外侧的横截面折射率逐渐偏离理想分布,弯曲损耗逐渐增大;而后者是因为修饰线诱导的应力逐渐向波导中心积累20,在m增加时,弯曲波导凸侧的折射率增大,从而降低辐射损耗,同时,m的增加导致弯曲波导横截面中折射率增大的区域逐渐向外扩展,等效于dis增大,使弯曲损耗增加,这样仅写入外侧修饰线时就存在一个弯曲损耗的最小值。在图8(b)中,更大曲率的弯曲波导需要增加m以实现最低的弯曲损耗。根据对图6的分析可知,对于更大曲率的弯曲波导,适当增大dis有助于降低弯曲损耗,而增加m等效于增大dis

图 8. 不同修饰线写入方式、Rm下波导的弯曲损耗。(a)两侧对称写入;(b)外凸侧写入;(c),(d)按两侧对称写入和外凸侧写入方式写入两层修饰线时弯曲波导横截面的光学显微镜图像

Fig. 8. Bending losses of waveguide under different writing methods of modification lines, R and m. (a) Writing symmetrically on both sides; (b) only writing from outside of bend; (c),(d) optical microscope images of cross section of bent waveguide when two layers of modification lines are written on both sides and from outside of bending, respectively

下载图片 查看所有图片

4 结论

本文使用飞秒激光在弯曲波导内部写入修饰线的方法降低弯曲波导的弯曲损耗。探究了不同半径下修饰线和波导的写入顺序、中心间隔、修饰线的写入功率、写入密度、包覆角度、写入方式以及写入层数对弯曲波导损耗的影响。实验结果表明,在R=20 mm时,使用最优写入顺序、外侧写入方式和最优激光加工参数组合(dis(1)=0.3 μm,P2=300 mW,θ=10°σ=10°m=2),能够将S型弯曲波导的弯曲损耗降低至0.64 dB/cm。实验结果与Rsoft仿真结果一致,证明该方法能够大幅降低大曲率弯曲波导的弯曲损耗。与已有的方法相比,该方法适用范围广泛且不占用除波导外的额外空间,为光子芯片的集成提供了更为便利和灵活的选择,有助于推动其发展和应用。

参考文献

[1] Ams M, Marshall G D, Spence D J, et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optics Express, 2005, 13(15): 5676-5681.

[2] Ni J C, Liu S L, Chen Y, et al. Direct observation of spin-orbit interaction of light via chiroptical responses[J]. Nano Letters, 2022, 22(22): 9013-9019.

[3] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Science, 2021, 2021: 9783514.

[4] 龙婧, 焦玢璋, 范旭浩, 等. 飞秒激光组装一维纳米材料及其应用[J]. 中国激光, 2021, 48(2): 0202017.

    Long J, Jiao B Z, Fan X H, et al. Femtosecond laser assembly of one-dimensional nanomaterials and their application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202017.

[5] Gross S, Riesen N, Love J D, et al. Three-dimensional ultra-broadband integrated tapered mode multiplexers[J]. Laser & Photonics Reviews, 2014, 8(5): L81-L85.

[6] Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications[J]. Nanophotonics, 2015, 4(3): 332-352.

[7] 廖嘉宁, 王欣达, 周兴汶, 等. 飞秒激光直写铜微电极研究[J]. 中国激光, 2019, 46(10): 1002013.

    Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10): 1002013.

[8] Roth G L, Kefer S, Hessler S, et al. Polymer photonic crystal waveguides generated by femtosecond laser[J]. Laser & Photonics Reviews, 2021, 15(11): 2100215.

[9] 张彬, 李子琦, 王磊, 等. 飞秒激光直写激光晶体光波导的研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111415.

    Zhang B, Li Z Q, Wang L, et al. Research advances in laser crystal optical waveguides fabricated by femtosecond laser direct writing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111415.

[10] Ding X C, Zhao Y, Hassan A, et al. Femtosecond laser direct writing of optical overpass[J]. Micromachines, 2022, 13(7): 1158.

[11] Cai C K, Wang J. Femtosecond laser-fabricated photonic chips for optical communications: a review[J]. Micromachines, 2022, 13(4): 630.

[12] 周伟平, 王树同, 于泳超, 等. 飞秒激光直写制备内嵌微透镜、能源器件及生物传感器的研究进展[J]. 中国激光, 2017, 44(1): 0102002.

    Zhou W P, Wang S T, Yu Y C, et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102002.

[13] Bastos A R, Vicente C M S, Oliveira-Silva R, et al. Integrated optical Mach-Zehnder interferometer based on organic-inorganic hybrids for photonics-on-a-chip biosensing applications[J]. Sensors, 2018, 18(3): 840.

[14] Flamini F, Magrini L, Rab A S, et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining[J]. Light: Science & Applications, 2015, 4(11): e354.

[15] Zhang P, Aungskunsiri K, Martín-López E, et al. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client[J]. Physical Review Letters, 2014, 112(13): 130501.

[16] Mukherjee S, Rechtsman M C. Observation of Floquet solitons in a topological bandgap[J]. Science, 2019, 368(6493): 856-859.

[17] Arriola A, Gross S, Jovanovic N, et al. Low bend loss waveguides enable compact, efficient 3D photonic chips[J]. Optics Express, 2013, 21(3): 2978-2986.

[18] Liu Z M, Liao Y, Fang Z W, et al. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(7): 070322.

[19] Pätzold W M, Demircan A, Morgner U. Low-loss curved waveguides in polymers written with a femtosecond laser[J]. Optics Express, 2017, 25(1): 263-270.

[20] Lee T, Sun Q, Beresna M, et al. Low bend loss femtosecond laser written waveguides exploiting integrated microcrack[J]. Scientific Reports, 2021, 11: 23770.

[21] Tan D Z, Zhang B, Qiu J R. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications[J]. Laser & Photonics Reviews, 2021, 15(9): 2000455.

[22] 高峰, 秦莉, 陈泳屹, 等. 弯曲波导研究进展及其应用[J]. 中国光学, 2017, 10(2): 176-193.

    Gao F, Qin L, Chen Y Y, et al. Research progress of bent waveguide and its applications[J]. Chinese Optics, 2017, 10(2): 176-193.

[23] Heiblum M, Harris J. Analysis of curved optical waveguides by conformal transformation[J]. IEEE Journal of Quantum Electronics, 1975, 11(2): 75-83.

[24] Melloni A, Carniel F, Costa R, et al. Determination of bend mode characteristics in dielectric waveguides[J]. Journal of Lightwave Technology, 2001, 19(4): 571-577.

[25] Hirao K, Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser[J]. Journal of Non-Crystalline Solids, 1998, 239(1/2/3): 91-95.

[26] Zoubir A, Lopez C, Richardson M, et al. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate)[J]. Optics Letters, 2004, 29(16): 1840-1842.

[27] Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses[J]. IEEE Photonics Technology Letters, 2004, 16(5): 1337-1339.

[28] Nolte S, Will M, Burghoff J, et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 2003, 77(1): 109-111.

[29] Fernandez T T, Gross S, Arriola A, et al. High performing designer glass platform to host versatile photonic devices[J]. APL Materials, 2021, 9(12): 121109.

[30] 佘守宪. 导波光学物理基础[M]. 北京: 北京交通大学出版社, 2002: 94-98.

    SheS X. Fundamentals of guided wave optics and physics[M]. Beijing: Beijing Jiaotong University Press, 2002: 94-98.

[31] Li Z Z, Li X Y, Yu F, et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses[J]. Optics Letters, 2021, 46(3): 520-523.

[32] Sun Q, Lee T, Beresna M, et al. Control of laser induced cumulative stress for efficient processing of fused silica[J]. Scientific Reports, 2020, 10: 3819.

[33] 陈媛媛, 余金中, 严清峰, 等. SOI波导弯曲损耗影响因素的分析[J]. 半导体学报, 2005, 26(S1): 216-219.

    Chen Y Y, Yu J Z, Yan Q F, et al. Analysis on influencing factors of bend loss of silicon-on-insulator waveguides[J]. Journal of Semiconductors, 2005, 26(S1): 216-219.

李义春, 肖凯恒, 李中天, 刘畅, 于颜豪, 田振男. 大曲率低损耗弯曲波导的飞秒激光直写[J]. 中国激光, 2024, 51(16): 1602403. Yichun Li, Kaiheng Xiao, Zhongtian Li, Chang Liu, Yanhao Yu, Zhennan Tian. Femtosecond Laser Direct Writing of Bent Waveguides with High Curvature and Low Loss[J]. Chinese Journal of Lasers, 2024, 51(16): 1602403.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!