中国激光, 2021, 48 (14): 1402017, 网络出版: 2021-07-05   

飞秒激光烧蚀面齿轮材料的形貌特征研究 下载: 818次

Study on Morphology Characteristics of Femtosecond Laser-Ablated Face Gear Materials
作者单位
1 湖南工业大学机械工程学院, 湖南 株洲 412007
2 湖北文理学院机械工程学院, 湖北 襄阳 441053
摘要
飞秒激光加工面齿轮材料18Cr2Ni4WA是一种面齿轮精微修正的新型加工技术。首先,根据烧蚀凹坑的直径和激光功率的定量关系得到激光的烧蚀阈值,根据烧蚀凹坑的深度和激光功率的定量关系得到材料的吸收系数。然后,考虑到能量累积效应,从高斯激光的聚焦方式考虑变离焦量效应,建立材料内部的能量吸收模型。最后,通过改变脉冲数和激光功率,研究飞秒激光烧蚀凹坑直径和深度的变化规律。实验结果表明,脉冲频率为200 kHz的飞秒激光脉冲数大于20时,烧蚀凹坑的直径和深度趋于稳定,这与理论结果相吻合。随着激光功率的增大,飞秒激光的加工质量有明显下降,当激光功率为1 W时,飞秒激光的加工质量良好且烧蚀深度足够深。
Abstract

Objective Face gear has been widely used in aviation, construction machinery, and other industries. With advancements in science and technology, the accuracy of face gear consequently demands higher requirements. Machining has met a certain bottleneck; therefore, femtosecond laser microcorrection face gear has been proposed as a new machining technology. Herein, the morphological characteristics of femtosecond laser ablated face gear material, such as pit diameter and depth, are investigated to provide a technical basis for improving the precision-machining quality of face gear.

Methods FemtoYL-100 all-fiber laser is used to generate 828 fs laser to ablate 18Cr2Ni4WA. A digital three-dimensional (3D) video microscope is used to observe the micromorphology, diameter, and depth of ablated pits. The experiment of single pulse femtosecond laser ablation gear material is conducted. Combined with the theoretical and experimental results, the ablation threshold is obtained from the quantitative relationship between the ablation pit diameter and laser power. Furthermore, the material absorption coefficient is obtained from the quantitative relationship between the ablation pit depth and laser power. As a result, the theoretical ablation model of multipulse femtosecond laser face gear material is established, and the effects of energy accumulation and variable defocusing are considered. The effect of variable defocusing amount suggests that with the increase in the number of pulses, the depth of ablation pits increases and the defocusing number of a single pulse femtosecond laser changes continuously. It implies that the defocusing amount of the central position of the laser spot changes with the change in the number of pulses. According to the theoretical model, changing the number of pulses and laser power, Matlab is used to simulate the change in the diameter and depth of femtosecond laser ablation pits. Then, the multipulse femtosecond laser ablation experiment is conducted to verify the accuracy of the theory.

Results and Discussions According to the linear relationship between the square of the diameter of the ablation pit and the logarithm of laser power (Fig.5), the ablation threshold of 18Cr2Ni4WA is 0.1383 J/cm 2. According to the linear relationship between the depth of ablation pit and the logarithm of laser power (Fig.6), the absorption coefficient of 18Cr2Ni4WA is 0.5188 μm -1. The results showed that when the pulse number is greater than 20, the diameter of ablation pits tends to be stable (Fig.10), and the energy accumulation coefficient is 0.9967. High power laser produced more liquid materials; thus, liquid materials will remain at the bottom or wall of the ablation pits and solidify to form molten materials, resulting in an uneven morphology of the ablation pits (Fig.11). With an increase in laser power, the residual molten material in the pits ablated by single-pulse femtosecond laser begins to appear, changing from a stripe structure to an irregular hole structure, mainly located at the bottom of the pits (Fig.12(a)). In the multipulse femtosecond laser processing, when the vaporized material pushes the liquid material away from the ablation pit, the liquid material, which fails to discharge the ablation pit, solidifies into a larger convex structure (Fig.12 (b)). The high temperature of the vaporized material and the accumulated energy in the material will lead to the second ablation of the material on the surface of the ablation pit, forming a smaller convex structure on the surface of the ablation pit (Fig. 12(b)). The smooth and highly reflective surface of the convex structure will make it difficult to be ablated and hinder the discharge of subsequent materials (Fig. 12(b)). With an increase in laser power, the residual melt in the multipulse ablation pits will increase, the quality of pit morphology will decrease, and the convex structure in the pits will be higher than the material plane (Fig.13). The multipulse femtosecond laser ablation pits with laser power of 1 W have better quality (Fig.13). However, when the pulse number is greater than 20, the second pulse number has no obvious effect on the quality of the pit morphology (Fig.13). By comparing the experimental and theoretical values of ablation pit depth under different power and pulse number, it can be seen that the theoretical model is reasonable, and the residual melt in the ablation pit generated by high power multisecond femtosecond laser will reduce the ablation pit depth (Fig.14). Under the condition of ensuring ablation depth and machining quality, it is more suitable to set the laser power of machining face gear material to 1 W (Fig.14).

Conclusions Herein, the ablation threshold and material coefficient of 18Cr2Ni4WA are determined. The quantitative relationship between the ablation pit diameter and pulse number is also determined. Furthermore, the quantitative relationship between the ablation pit depth and pulse number is established and verified. Based on the ablation depth and machining quality, it is found that the machining effect of multipulse femtosecond laser with 1 W laser power is the best. It provides parameters and theoretical references for femtosecond laser surface modification technology.

1 引言

面齿轮具有的重载、平稳传动特性,使其广泛应用于航空器等领域中。随着航空技术的发展,人们对面齿轮精度的要求也越来越高。但面齿轮齿形复杂、技术要求高、制造困难,机械加工精度已经到达瓶颈。飞秒激光具有脉冲宽度短、峰值功率高等特点,对于周围材料的热影响很小,几乎不存在长脉冲激光加工中的等离子体屏蔽效应[1-3]。此外,微纳级别的加工精度可突破衍射极限,使飞秒激光实现对各种材料的超精密加工[4-7]。因此,研究功率和脉冲数对飞秒激光烧蚀面齿轮材料18Cr2Ni4WA烧蚀凹坑直径和深度的影响具有重要意义。

目前,飞秒激光加工金属的研究主要集中在单质金属、成分比较简单的合金和半导体等,对于18Cr2Ni4WA的研究较少。彭元钦等[8]研究了激光功率以及离焦量对飞秒激光烧蚀钛铝合金TC4表面深度、形貌的影响,并在钛铝合金表面制备了一种二维周期结构,提高了钛铝合金表面的硬度,降低了其表面的磨擦系数。Genieys等[9]使用单脉冲飞秒激光辐照4种金属(铝、铜、镍和钨),并测量其烧蚀深度和直径随激光入射能量的变化情况,从而确定单脉冲状态下的烧蚀阈值和烧蚀速率。明瑞等[10]研究了烧蚀面齿轮材料18Cr2Ni4WA的电子亚系统和晶格亚系统的能量耦合作用,建立了双温模型,采用有限差分法仿真分析了激光脉冲宽度、平均功率对电子和晶格温度的影响规律,并通过实验观测了平均功率和脉冲数对材料微观形貌的影响。

本文结合理论和实验得到激光的烧蚀阈值和材料的吸收系数,并以此为基础研究变离焦量效应和能量累积效应,建立能量吸收模型,探索飞秒激光烧蚀过程中的能量吸收规律。此外,还研究了激光功率和脉冲数对面齿轮材料18Cr2Ni4WA烧蚀凹坑深度和直径的影响,并与飞秒激光实验进行了对比分析。

2 材料及方法

实验材料18Cr2Ni4WA是一种高强度的合金渗碳钢,除主要成分Fe外,还含有质量分数分别为4.25%、1.5%、1.0%的Ni、Cr、W等化学成分。为方便实验并提高实验的准确性,采用DK7725E型线切割机床切取试样,并对试样的待加工表面进行打磨,以去除表面应力和降低粗糙度。表1为面齿轮材料18Cr2Ni4WA的参数。

表 1. 面齿轮材料18Cr2Ni4WA的参数

Table 1. Parameters of the face gear material 18Cr2Ni4WA

RockwellhardnessSurface roughnessRa /μmDensityρ /(g·cm-3)Boiling pointTv /KMelting pointTm /KMaterial absorptivity β1
56--630.2607.91313417240.20

查看所有表

表 2. 实验平台的运动参数

Table 2. Motion parameters of the experimental platform

NameParameterTechnical index
XY moving axesrange of motion /(mm×mm)400×250
maximum speed /(mm·s-1)250
repeat precision /μm±1.5
positioning precision /μm±3.0
resolving power /μm0.1
3D galvanometer systemsweep range /(mm×mm)67×67
focus range of W-axis /mm±13.5
scanning speed /(mm·s-1)≤5000
jump speed /(mm·s-1)≤10000
repeat positioning accuracy /μrad2
Z moving axisrange of motionr /mm200
maximum speed /(mm·s-1)20
resolving power /μm1
AB rotation axesrotation range /(°)360
positioning precision /arcsec±10
resolving power /arcsec±3

查看所有表

表 3. 飞秒激光烧蚀18Cr2Ni4WA的实验参数

Table 3. Experimental parameters of the femtosecond laser ablation of 18Cr2Ni4WA

Wavelengthλ /nmFrequencyfn /kHzPulse widthτ /fsSpot diameterω0 /μmPowerP /WNumber of pulsesN /pulses
1030100、200828201--3.21--6000

查看所有表

飞秒激光加工系统的原理如图1所示,主要由激光器、折射镜、扩束器、三维(3D)振镜系统、远心场镜(焦距为163 mm)、四轴平台、测距仪(精度为0.01 mm)、CCD相机、吹气系统及计算机系统组成。3D振镜系统中用UV轴振镜调整激光方向,远心场镜能使不同方向的激光焦点在同一水平面上,W轴透镜可控制激光焦点在垂直方向上的移动。3D振镜系统的垂直方向调焦范围有限,位于调焦机构上的Z轴有更大的移动范围,能增大系统的加工范围。四轴平台的XY移动轴和AB旋转轴可以调节工件的加工位置和加工姿态。该加工系统共有8个运动轴,其运动参数如表2所示。

图 1. 飞秒激光加工系统的示意图

Fig. 1. Schematic diagram of femtosecond laser processing system

下载图片 查看所有图片

实验采用的激光器为FemtoYL-100全光纤激光器,最大功率116.4 W,激光束的质量因子M2为1.259,能产生中心波长为1030 nm的脉冲激光,脉冲宽度为300 fs~6 ps,重复频率为25~5000 kHz,实验中的激光参数如表3所示。

烧蚀实验示意图如图2所示,图2(a)为单脉冲烧蚀,图2(b)为多脉冲烧蚀。通过改变功率进行单脉冲飞秒激光烧蚀实验,通过改变功率和脉冲数进行多脉冲飞秒激光烧蚀实验。通过改变激光脉冲时间的方式,调整激光脉冲数;通过软件改变激光功率,并用OPHIR激光功率计测量到达试样表面的实际功率。

图 2. 飞秒激光烧蚀实验示意图。(a)单脉冲烧蚀;(b)多脉冲烧蚀

Fig. 2. Schematic diagram of femtosecond laser ablation experiment. (a) Single pulse ablation; (b) multipulse ablation

下载图片 查看所有图片

实验完成后,对烧蚀形成的凹坑进行检测,检测设备为数字式3D视频显微镜HIROX KH-7700,最大放大倍数为7000倍,测量精度为0.001 μm,其实物图如图3所示。采用从低到高的逐层扫描方式对烧蚀凹坑进行图像采集,再通过软件合成凹坑的形貌图,在形貌图上选择测量截面,从而得到烧蚀凹坑的直径和深度。用Matlab软件对理论模型进行仿真,得到不同功率和不同脉冲数下的烧蚀凹坑轮廓及其对应的烧蚀凹坑直径和烧蚀深度,并与实验检测结果进行对比和分析。

图 3. 数字式3D视频显微镜的实物图

Fig. 3. Physical image of a digital 3D video microscope

下载图片 查看所有图片

3 单脉冲飞秒激光的面齿轮材料烧蚀特性

3.1 面齿轮材料的烧蚀阈值

烧蚀阈值指激光对材料造成烧蚀的临界能量密度,由材料本身的性质决定[11],即飞秒激光对材料具有固定的烧蚀阈值[12]。激光到达材料表面前会损失部分能量,为了提高实验和理论的准确性,实验中的激光功率均指激光达到材料表面时的功率,已考虑飞秒激光在光学系统和空气中的损耗,但未考虑材料反射的损耗。

飞秒脉冲激光的能量在空间上呈高斯分布,光斑的能量密度分布如图4所示。其中,F0为光斑中心的能量密度,激光能量密度振幅减小到F0/e2时的光束半径即为束腰半径ω0,聚焦光斑的直径为2ω0。光斑截面直径上某处与光斑中心距离为R,则该处的能量密度F(R)可表示为[12]

F(R)=F0exp(-2R2/ω02)(1)

图 4. 高斯光束的能量密度分布

Fig. 4. Energy density distribution of the Gaussian beams

下载图片 查看所有图片

在光斑截面上对能量密度进行积分,可得到单脉冲能量Ep。也可通过激光功率P和脉冲重复频率fn得到单脉冲能量Ep,从而确定光斑中心能量密度F0,单脉冲能量Ep可表示为

Ep=0+2πRF(R)dR=πω022F0=P/fn(2)

若单脉冲烧蚀凹坑的直径为D,烧蚀凹坑边缘处的密度刚好足够发生烧蚀,定义距离光斑中心D/2处的能量密度为材料的烧蚀阈值Fth,则

D2=2ω02ln(F0/Fth)(3)

将(2)式代入(3)式,整理得到

D2=2ω02lnP+ln2πω02fnFth(4)

可以发现,烧蚀凹坑直径的平方D2与功率的对数值ln P满足线性关系,其斜率k=2 ω02。由于采用的光纤激光器存在一定的开闭光延迟(小于5 μs),因此,将单脉冲飞秒激光的脉冲重复频率设置为100 kHz。在不同功率P下得到单脉冲烧蚀凹坑直径D的散点图,如图5所示,拟合得到D2=1071ln P-2304.1。根据拟合直线斜率得到实际的ω0=23.14 μm,误差为+3.14 μm(15.7%)。可以发现,实验数据点与拟合直线的波动不大,验证了实验数据的合理性。

图 5. D2与ln P的拟合曲线

Fig. 5. Fitting curve of D2 and ln P

下载图片 查看所有图片

当烧蚀凹坑直径无限接近于0 μm时,光斑中心的能量密度就是材料的烧蚀阈值,即Fth=F0=2P/(π ω02fn)。令(4)式中的D=0 μm,得到面齿轮材料18Cr2Ni4WA的材料烧蚀阈值Fth=0.1383 J/cm2

3.2 面齿轮材料的吸收系数

目前关于18Cr2Ni4WA材料的实验研究较少,缺少可参考的18Cr2Ni4WA材料吸收系数,因此,尝试用铁的参数代替。由文献[ 13]可知,材料吸收系数b可以根据其消光系数κ和激光波长λ得到,即b=4πκ/λ。根据文献[ 14]给出的消光系数得到铁的材料吸收系数为50.5827 μm-1,而文献[ 15]中给出铁的材料吸收系数为71 μm-1,为了确认材料吸收系数的准确性,进行了理论和实验验证。

由于能量随传播距离的增加呈指数衰减[16],则距离材料表面H处的能量密度可表示为

F(H,R)=βbF(R)exp(-bH),(5)

式中,β为材料的吸收率。使R=0 μm,F(H,R)=βbFth,得到光斑中心位置处的烧蚀凹坑深度hmax

hmax=b-1lnP+b-1ln2πω02fnFth(6)

可以发现,烧蚀凹坑深度hmax和功率的对数值ln P满足线性关系,其斜率k=b-1。根据不同功率P下的单脉冲烧蚀凹坑深度hmax绘制散点图,结果如图6所示,拟合得到18Cr2Ni4WA的材料吸收系数为0.8032 μm-1。将18Cr2Ni4WA的理论材料吸收系数0.5188 μm-1(误差为-35.4%)代入(6)式中得到理论直线方程,可以发现,此时理论与实验数据拟合直线的一致性最好,理论值的合理性最高。相比铁的材料吸收系数,其误差在可接受范围内,这验证了通过实验获得更准确的18Cr2Ni4WA材料吸收系数的必要性。

图 6. hmax与ln P的拟合曲线

Fig. 6. Fitting curve of hmax and ln P

下载图片 查看所有图片

4 多脉冲飞秒激光的面齿轮材料烧蚀模型和仿真

4.1 多脉冲飞秒激光的能量累积效应

能量累积效应指前一个脉冲激光作用于材料结束后,一部分热量损失在外部环境中,而大部分热量被吸收后传递并累积在材料内部[17]。多脉冲飞秒激光加工时,能量累积效应导致低能量密度区域的能量密度随脉冲数不断累积,从而达到烧蚀阈值,使低能量密度区域材料被烧蚀。

s为18Cr2Ni4WA的能量累积系数,可表示材料中能量累积效应的程度。当s=1时,材料中不存在能量累积效应。由文献[ 18]可知,飞秒激光脉冲的间隔时间越长,能量累积效应越弱。为了保证能量累积系数s相对固定,加工中保持脉冲频率不变。将脉冲激光按累积程度在材料内部残留的能量等价为本次脉冲激光的能量,则材料内部距离表面H处、第N个激光脉冲辐照后的能量密度可表示为

QT=bβF(R)exp(-bH)N1-s(7)

4.2 多脉冲飞秒激光的变离焦量效应

离焦量对微孔加工的影响如图7所示,可以发现,高斯激光聚焦时束腰处的光斑直径最小。图7(b)中的激光束腰处位于材料表面附近,能形成平底状微坑;而正负离焦量的存在都会导致烧蚀凹坑直径增大,如图7(a)和图7(c)所示[19]。对于不同的离焦量,工件在焦点处的烧蚀率均最大,原因是焦点处的能量密度最高。此外,负离焦量的烧蚀率大于正离焦量,原因是离焦量为正时,加工部位处于光束聚焦后,光束在加工前已经发生了自聚焦等一系列非线性效应,对能量有一定的削弱[20]

图 7. 离焦量对微孔加工的影响。(a)正离焦量;(b)无离焦;(c)负离焦量

Fig. 7. Effect of defocusing amount on micro-hole processing. (a) Positive defocus; (b) no defocus; (c) negative defocus

下载图片 查看所有图片

变离焦量的示意图如图8所示,可以发现,光斑中心位置的飞秒激光束腰位置不变;且烧蚀凹坑深度随脉冲数的增多而增大,导致单个脉冲飞秒激光的离焦量不断发生变化,从而影响飞秒激光的加工。即光斑中心位置的离焦量随脉冲数的变化而不断变化,这种情况也被称为多脉冲飞秒激光加工中的变离焦量效应,即激光光束横截面半径ωf)会随离焦量Δf的增大而增大。

图 8. 变离焦量的示意图

Fig. 8. Schematic diagram of the defocus variation

下载图片 查看所有图片

从高斯激光的聚焦方式可知,激光光束横截面半径ωf)可表示为

ω(Δf)=ω01+λΔfπω022(8)

可以发现,激光光束横截面半径ωf)的增大分散了激光能量、降低了能量密度。由(1)式和(8)式得到光斑中心位置R=0 μm、离焦量为Δf处光斑的能量密度为

QC=1+λΔfπω022-1F0(9)

4.3 面齿轮材料对多脉冲飞秒激光的能量吸收模型

结合能量累积效应和变离焦量效应,由(7)式和(9)式得到材料吸收能量后内部的能量密度分布为

F(H,R)=βbF01+λHπω022exp-2R2ω021+λHπω022-bHN1-s(10)

用Matlab仿真得到不同激光参数的烧蚀凹坑剖面轮廓及能量分布如图9所示,可以发现,能量密度在轴向和径向上逐渐降低,同时能确定烧蚀凹坑的直径和深度。

图 9. 烧蚀凹坑剖面轮廓及能量分布。(a) P=1 W;(b) P=3.2 W

Fig. 9. Profile and energy distribution of ablation pits. (a) P=1 W; (b) P=3.2 W

下载图片 查看所有图片

为了得到烧蚀凹坑直径和脉冲数之间的关系,使(10)式中的F(H,R)=βbFth,H=0 μm,即N个脉冲后距离光斑中心位置R处达到烧蚀阀值,得到烧蚀凹坑直径D=2R与脉冲数的定量关系为

D=ω02lnF0FthN1-s(11)

可以发现,(11)式符合文献[ 12]描述的烧蚀凹坑直径与脉冲数的关系。为了保证能量累积系数s的可靠性,在激光功率P=1 W,重复频率fn=200 kHz时,在脉冲数N=20、100、200、500、1000、2000、3000、4000、5000、6000的条件下烧蚀18Cr2Ni4WA并测量烧蚀凹坑直径D,绘制(N,D)散点图,同时通过仿真得到理论拟合曲线,结果如图10所示。可以发现,当能量累积系数s=0.9967时,拟合曲线与测量散点的拟合优度r2=0.9908(拟合优度r2为拟合曲线的拟合程度,最大值为1,越接近1,表明拟合程度越好),这表明当s=0.9967时模型的可靠性较高。还可以发现,当脉冲数大于20时,烧蚀凹坑直径达到40 μm且能保持稳定。

图 10. DN的拟合曲线

Fig. 10. Fitting curve of D and N

下载图片 查看所有图片

烧蚀凹坑的深度会受变离焦量效应和能量累积效应的影响,若烧蚀凹坑的深度hmax位于光斑中心,即R=0 μm,H=hmax,F(H,R)=βbFth时,得到烧蚀凹坑深度hmax与脉冲数N的关系为

βbFth=1+λhmaxπω022-1βbF0exp(-bhmax)N1-s(12)

由文献[ 16]可知,电子和晶格温度的温度平衡时间在皮秒量级,且平衡温度受激光功率的影响,之后晶格温度仍旧持续降低。实验中的飞秒激光脉冲间隔时间为微秒量级,在下一个脉冲到达前,材料的晶格温度已远远下降至熔化温度以下,即烧蚀凹坑表面在脉冲间隔时间内就完成了冷却凝固。而飞秒激光烧蚀后的凹坑表面材料主要成分为铁的氧化混合物,即第1个脉冲烧蚀的是18Cr2Ni4WA,需考虑18Cr2Ni4WA的材料吸收率β1;之后的脉冲则需要考虑铁氧化混合物的材料吸收率β2。由于氧化混合物的厚度远远低于烧蚀凹坑的深度,因此,可忽略其对材料吸收系数的影响。此时,烧蚀凹坑深度hmax与脉冲数N的关系为

β1Fth=1+λhmaxπω022-1F0exp(-bhmax)β1N1-s+(β2-β1)(N-1)1-s(13)

5 实验结果与分析

分别在激光功率P=1,1.7,2,2.7,3.2 W的条件下,用脉冲数N=20,100,200,500,1000,2000,3000,4000,5000,6000的多脉冲飞秒激光烧蚀材料。随着距离材料表面深度的增加,材料的能量密度呈指数衰减,当能量密度达到烧蚀阈值时,材料温度达到气化温度,材料会直接气化;当能量密度低于烧蚀阈值时,材料的温度低于气化温度但达到熔化温度,材料会熔化成液态;当能量密度继续降低时,材料的温度低于熔化温度,材料仍为固态。用飞秒激光烧蚀时,材料到达气化温度的时间很短,从而在烧蚀凹坑底部形成较大的气压差,气化材料带动液态材料沿烧蚀凹坑坑壁反向排出烧蚀凹坑外。随着激光功率的增大,熔化成液态的材料增多,导致烧蚀凹坑深度增加,液态材料排出烧蚀凹坑外所需的动能也逐渐增大,此时会有液态材料残留在烧蚀凹坑内并凝固形成熔融物,从而影响烧蚀凹坑的形貌。烧蚀凹坑内熔融物的残留形式如图11所示,大致可分为2种:1)大量熔化的液态材料残留在烧蚀凹坑底部,重新凝固成熔融物,导致烧蚀凹坑底部不平整,如图11(a)所示;2)熔化的液态材料基本都被推离烧蚀凹坑底部,但因动能不够导致较大的熔化材料在烧蚀凹坑坑壁重新凝固,形成较大的凸形结构熔融物,如图11(b)所示。

图 11. 烧蚀凹坑内熔融物的残留形式。(a)残留在坑底;(b)残留在坑壁

Fig. 11. Residual form of melt in ablation pits. (a) Remain in the pit bottom; (b) remain in the pit wall

下载图片 查看所有图片

烧蚀凹坑内的残留熔融物形貌如图12所示,其中,单脉冲飞秒激光烧蚀凹坑内的熔融物主要残留在烧蚀凹坑底部,低功率时基本无残留;当激光功率增大时,残留的液态材料会形成条纹结构;继续增大激光功率时,处于气液态之间的亚稳态材料增多,气态和液态材料混合形成的蒸汽泡上升并快速爆炸,残留的液态材料在烧蚀凹坑底部形成孔洞结构,如图12(a)所示。多脉冲飞秒激光加工中,气化材料在推动液态材料离开烧蚀凹坑时,未能排出烧蚀凹坑的液态材料凝固成较大凸起结构;气化材料的高温和材料中累积的能量导致烧蚀凹坑表面材料发生二次烧蚀,在烧蚀凹坑表面形成较小的凸形结构;凸形结构弧形高反射的表面使其难以被烧蚀并阻碍后续材料的排出,如图12(b)所示。

图 12. 烧蚀凹坑内的残留熔融物形貌。(a)单脉冲烧蚀凹坑;(b)多脉冲烧蚀凹坑

Fig. 12. Morphology of residual melt in ablation pits. (a) Single pulse ablation pits; (b) multipulse ablation pits

下载图片 查看所有图片

不同脉冲数和激光功率下的烧蚀凹坑形貌如图13所示。可以发现,当激光功率为1 W时,残留在烧蚀凹坑内的熔融物较少,烧蚀凹坑轮廓相对平滑,烧蚀凹坑底部平整,脉冲数的增加对烧蚀凹坑形貌的影响不明显。当激光功率增加至1.7 W和2 W时,残留在烧蚀凹坑内的熔融物较多,且熔融物的凸起比较明显,凹坑底部不平整。当激光功率增加至2.7 W和3.2 W时,残留在烧蚀凹坑内的熔融物非常多,烧蚀凹坑底部非常不规整,烧蚀凹坑内的凸起结构明显高于材料平面,此时的烧蚀深度已不具备研究意义。这表明激光功率的增加会降低多脉冲飞秒激光的加工质量,实验中P=1 W时的烧蚀凹坑形貌最好,多脉冲飞秒激光加工的质量较好,当脉冲数大于20时,多脉冲飞秒激光加工质量受脉冲数的影响较小。

图 13. 不同激光功率下的烧蚀凹坑形貌。(a)1 W;(b)1.7 W;(c)2 W;(d)2.7 W;(e)3.2 W

Fig. 13. Morphologies of ablation pits under different laser powers. (a) 1 W; (b) 1.7 W; (c) 2 W; (d) 2.7 W; (e) 3.2 W

下载图片 查看所有图片

不同脉冲数N和激光功率P下烧蚀凹坑深度hmax的仿真与实验结果如图14所示,其中,散点为实验值,仿真结果为根据(13)式得到的理论值。可以发现,烧蚀凹坑底部残留大量的熔融物会明显降低烧蚀凹坑的深度,导致烧蚀凹坑深度的实验值明显低于理论值;反之,没有残留的烧蚀凹坑深度实验值和理论值相差不大。且随着激光功率的增大,残留在烧蚀凹坑底部的熔融物逐渐增多。当激光功率P=1 W,脉冲数大于20时,烧蚀凹坑深度随脉冲数的增加变化不大;当激光功率增至1.7 W和2 W时,仅考虑底部没有熔融物残留的烧蚀凹坑深度,此时实验结果接近理论模型。这表明实验给出的理论模型是合理的,在保证烧蚀深度和加工质量的情况下,加工面齿轮材料的激光功率可设为1 W。

图 14. NP对烧蚀凹坑深度hmax的影响

Fig. 14. Effect of N and P on the ablation pit depth hmax

下载图片 查看所有图片

6 结论

开展了多脉冲飞秒激光烧蚀面齿轮材料18Cr2Ni4WA的烧蚀凹坑形貌研究,建立了多脉冲飞秒激光烧蚀18Cr2Ni4WA的能量吸收模型,并探究了不同脉冲数和激光功率下烧蚀凹坑直径和烧蚀凹坑深度的变化规律。实验结果表明,面齿轮材料18Cr2Ni4WA的烧蚀阈值为0.1383 J/cm2,吸收系数为0.5188 μm-1;脉冲频率为200 kHz的飞秒激光在面齿轮材料18Cr2Ni4WA上的能量累积系数s=0.9967,根据该累积系数建立的烧蚀凹坑直径与脉冲数的定量关系是可靠的;经20个激光脉冲后烧蚀凹坑深度可达到稳定,且多脉冲飞秒激光加工质量受脉冲数的影响较小,但随着功率的增加会有明显下降。在兼顾烧蚀深度和加工质量的前提下,激光功率为1 W的多脉冲飞秒激光加工效果最好。

参考文献

[1] Vorobyev AY, Guo CL. Femtosecond laser nanostructuring of metals[C] //Frontiers in Optics 2006, October 10, 2006, Rochester, New York, United States. Washington, D.C.: OSA, 2006: JWD36.

[2] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[3] 朱晓农, 包文霞. 超短脉冲激光及其相关应用的一些基本知识[J]. 中国激光, 2019, 46(12): 1200001.

    Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 2019, 46(12): 1200001.

[4] 崔智铨, 管迎春. 超快激光加工过程主要数值模型研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111408.

    Cui Z Q, Guan Y C. Review of numerical models of ultrafast laser processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111408.

[5] Cheng J, Liu C S, Shang S, et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 2013, 46: 88-102.

[6] Weck A, Crawford T H R, Wilkinson D S, et al. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3): 537-543.

[7] 张明鑫, 李志明, 聂劲松, 等. 多脉冲飞秒激光烧蚀硅的热累积效应[J]. 光电子技术, 2018, 38(4): 224-230.

    Zhang M X, Li Z M, Nie J S, et al. Heat accumulation effect of multipulse femtosecond laser ablation of silicon[J]. Optoelectronic Technology, 2018, 38(4): 224-230.

[8] 彭元钦, 杨丽, 卢博文, 等. 钛铝合金表面飞秒激光烧蚀特性研究[J]. 激光杂志, 2018, 39(11): 51-54.

    Peng Y Q, Yang L, Lu B W, et al. Study on ablation characteristics of titanium aluminum alloy by femtosecond laser[J]. Laser Journal, 2018, 39(11): 51-54.

[9] Genieys T, Sentis M, Utéza O. Measurement of ultrashort laser ablation of four metals (Al, Cu, Ni, W) in the single-pulse regime[J]. Advanced Optical Technologies, 2020, 9(3): 131-143.

[10] 明瑞, 申警卫, 赖名涛, 等. 面齿轮材料的飞秒激光精微烧蚀特性研究[J]. 激光与光电子学进展, 2021, 58(9): 0914001.

    Ming R, Shen J W, Lai M T, et al. Research on micro-precision ablation characteristics of femtosecond laser for face gear material 18Cr2Ni4WA[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0914001.

[11] 王菲, 李玉瑶, 车英, 等. 平顶激光束诱导薄膜损伤阈值测量系统[J]. 光子学报, 2016, 45(3): 0314003.

    Wang F, Li Y Y, Che Y, et al. Measurement system of flattop laser induced damage threshold to film[J]. Acta Photonica Sinica, 2016, 45(3): 0314003.

[12] 杨奇彪, 张弘, 周维, 等. 飞秒激光诱导硬质合金YG6表面累积效应[J]. 光子学报, 2019, 48(6): 0614002.

    Yang Q B, Zhang H, Zhou W, et al. Surface incubation effect of carbide YG6 induced by femtosecond laser[J]. Acta Photonica Sinica, 2019, 48(6): 0614002.

[13] Kiran K K, Samuel G L, Shunmugam M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2019, 263: 266-275.

[14] Weaver JH, Frederikse H PR. Optical properties of selected elements[M]. Boca Raton: CRC Press, 2001.

[15] 王震, 付文静, 张蓉竹. 飞秒激光多脉冲烧蚀金属铁的数值模拟[J]. 红外与激光工程, 2019, 48(7): 706002.

    Wang Z, Fu W J, Zhang R Z. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron[J]. Infrared and Laser Engineering, 2019, 48(7): 706002.

[16] Li L, Zhang D M, Li Z H, et al. The investigation of optical characteristics of metal target in high power laser ablation[J]. Physica B: Condensed Matter, 2006, 383(2): 194-201.

[17] 蔡颂, 熊彪, 陈根余, 等. 青铜金刚石砂轮的激光整形与修锐[J]. 红外与激光工程, 2017, 46(4): 406008.

    Cai S, Xiong B, Chen G Y, et al. Laser truing and sharpening of bronze-bond diamond grinding wheel[J]. Infrared and Laser Engineering, 2017, 46(4): 406008.

[18] 邵俊峰, 郭劲, 王挺峰. 飞秒激光与硅的相互作用过程理论研究[J]. 红外与激光工程, 2014, 43(8): 2419-2424.

    Shao J F, Guo J, Wang T F. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J]. Infrared and Laser Engineering, 2014, 43(8): 2419-2424.

[19] 夏博. 飞秒激光高质量高深径比微孔加工机理及其在线观测[D]. 北京: 北京理工大学, 2016: 35- 37.

    XiaB. Mechanism and online observation of high-aspect-ratio, high-quality microholes drilling with femtosecond laser[D]. Beijing: Beijing Institute of Technology, 2016: 35- 37.

[20] 谭超. 飞秒激光加工金属微孔工艺及表面质量研究[D]. 长沙: 中南大学, 2014: 27- 33.

    TanC. Research on processing technology and surface quality of metal micro-holes machined by femtosecond laser[D]. Changsha: Central South University, 2014: 27- 33.

林嘉剑, 明瑞, 李学坤, 赖名涛, 马玉龙, 明兴祖. 飞秒激光烧蚀面齿轮材料的形貌特征研究[J]. 中国激光, 2021, 48(14): 1402017. Jiajian Lin, Rui Ming, Xuekun Li, Mingtao Lai, Yulong Ma, Xingzu Ming. Study on Morphology Characteristics of Femtosecond Laser-Ablated Face Gear Materials[J]. Chinese Journal of Lasers, 2021, 48(14): 1402017.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!