激光与光电子学进展, 2020, 57 (11): 111404, 网络出版: 2020-06-02   

表面亚波长周期结构的飞秒激光调控制备 下载: 1564次特邀研究论文

Control of Subwavelength Periodic Surface Structure Formation with Femtosecond Laser Pulses
作者单位
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 长治学院电子信息与物理系, 山西 长治 046011
摘要
飞秒激光在材料表面诱导产生亚波长周期结构不仅可以改变材料表面的物化性质,而且具有无掩模制作和一步成型等优点,在多个领域具有广阔的应用前景。然而,目前结构形成存在排列规整性差、形状单一、制备效率低等问题。为此,综述了单束飞秒激光在金属表面高效制备规整性一维亚波长周期结构的研究进展,提出了利用时间延迟多束飞秒激光对金属和半导体表面一维亚波长周期结构产生特征(包括规整性、空间周期、排列方向等)进行灵活调控的新方法,成功实现了形貌特征分别为圆包、三角形、菱形、椭圆状、条纹-纳米颗粒复合等多种二维亚波长周期结构的制备,发现了表面结构调控产生过程中出现的超快物理新现象,阐明了时间延迟飞秒激光束与材料作用过程之间的瞬态关联作用。
Abstract
Femtosecond laser-induced periodic surface structures not only have the capability in modifying the physicochemical properties of the material interfaces, but also possess the features of mask-free and one-step processing, which promise wide applications in multidisciplinary fields. Currently, however, there are some challenges in this technology, such as the poor structural regularity, dimensional inflexibility and low production efficiency. This paper firstly reviews progresses in fabricating highly regular one-dimensional subwavelength periodic structures with the improved efficiency on metal films, under irradiation of the single-beam femtosecond laser pulses. Then we introduces novel methods to control one-dimensional structure features (including the regularity, periodicity and orientation) on both metals and semiconductors, by utilizing the collinear propagation of double femtosecond laser beams associated with certain temporal delays. Two-dimensional arrays of the subwavelength periodic structures are successfully achieved with different geometric profiles such as the triangle, rhombus, elliptical rod, and ripple-particle hybridization. Some ultrafast physical phenomena are discovered during the control formation of the periodic surface structures. The transient correlation effects between ultrafast dynamic processes of laser-material are elucidated for the incidence of temporally-delayed pulses.

1 引言

激光诱导周期表面结构(LIPSS)是光与物质相互作用产生的一种普遍物理现象,它起源于1965年Birnbaum等[1]采用纳秒脉冲激光在半导体锗表面诱导产生的一组周期性排列平行刻槽(而非烧蚀凹坑),后来被称为“条纹结构”。在早期的相关研究中,人们大都采用长脉冲激光作为光源,所形成的结构周期通常为波长量级[2-9]。随着飞秒激光器的普及化发展,人们开始重新关注这种表面周期结构的产生。不同于长脉冲激光作用结果,飞秒激光诱导的表面条纹结构周期通常为亚波长量级,即小于入射激光波长λ[10-25]。根据表面结构周期Λ和排列方向与入射激光波长和偏振方向的相对关系,可将其分为以下类型:1)低空间频率的垂直条纹结构(其中λ>Λ>λ/2)[12-20],其排列方向与入射光偏振相垂直;2)低空间频率的平行条纹结构(其中λ>Λ>λ/2)[16,20-21],其排列方向与入射光偏振相平行;3)高空间频率的垂直条纹结构(其中Λ<λ/2)[15-20,23],其排列方向与入射光偏振相垂直;4)高空间频率的平行条纹结构(其中Λ<λ/2)[16,24-25],其排列方向与入射光偏振相平行。实验表明,飞秒激光在金属和半导体等强吸收性固体表面容易产生第1类条纹结构,而在透明介质表面容易产生第2类条纹结构;当飞秒激光通量较低且脉冲累积数目较高时,介质和半导体表面容易产生第3类条纹结构,而金属表面容易产生第4类条纹结构。

材料表面亚波长条纹结构周期和排列方向可通过改变入射激光的波长、脉冲重叠数目、脉冲能量、偏振态和加工环境等参数获得改变[26-41]。前期研究证实,条纹结构周期随入射激光波长增大而增加[26-27],随脉冲累积数目增加而减小[28-31]。当激光通量增加时,亚波长条纹结构周期在铜、钨、镍钛合金、硅、石英等材料表面表现出了增加趋势[25,30,32-34],而在金属钛表面表现出了减小趋势[35]。另外,高折射率加工环境有助于减小条纹结构周期[36-38]。通常情况下,一维亚波长周期条纹结构排列方向与入射激光的线偏振方向垂直或平行[39-41]

关于激光诱导周期条纹结构形成的物理机制是人们不断探索的一个重要科学问题。起初,Birnbaum等[1]认为它是由聚焦透镜衍射引起的激光选择性烧蚀而形成。随后Emmomy等[2]将其归因为入射激光和表面散射波相互干涉导致激光能量在材料表面的周期性沉积而形成,且结构周期依赖于激光波长和入射角度θ,即Λ=λ/(1±sinθ)。1982年,Keilmann等[3]提出了入射光与表面波干涉是这种结构形成的根本原因。Sipe等[4]认为表面散射光与折射光的干涉作用导致激光能量在材料表面不均匀分布,从而形成周期条纹结构。该模型定义一个“初始表面粗糙度”参数,并引入效率因子η来定量描述激光能量在材料表面的不均匀沉积,预测了材料表面可能形成条纹结构的倒格矢(k)方向,它在一定程度上能够合理解释长脉冲激光诱导产生的大周期条纹结构,但却无法深刻描述飞秒激光诱导亚波长周期条纹结构现象。后来,人们相继提出了多种理论来解释亚波长周期条纹结构的形成机理[42-53],其中,入射激光与等离激元波干涉被广泛采用[42-46]

在激光垂直入射条件下,周期条纹结构的空间周期约等于表面等离激元波的波长,即 Λ=λsp=λ/εmεd/(εm+εd),其中εmεd分别为材料和加工环境的介电常数。在该理论中表面等离激元波是形成周期条纹结构的关键因素,其激发条件是材料介电常数的实部需满足Re(εm)<-εd。对金属材料而言,其中的大量自由电子使得其通常能够满足上述条件。对半导体和介质材料而言,尽管在稳态情况下缺少自由电子,但其可以通过非线性吸收获得一定量的自由电子(即瞬态金属化效应),从而满足表面等离激元波产生条件[42-43]。目前,针对高空间频率条纹结构形成存在自组织[47]、二次谐波激发[48-49]、氧化和孪生[22,50]、介质倏逝场[51]、表面等离激元波等[52-53]多种理论解释。

实验中,亚波长周期条纹结构的产生通常是基于多个飞秒激光脉冲累积照射结果,而上述模型未曾考虑多脉冲与材料作用的反馈机制[54]。在亚波长周期条纹结构产生的物理过程中,最初入射的飞秒激光与材料表面作用不仅产生随机分布的纳米结构,而且可能造成材料表面物化性质的变化,这将有助于后续飞秒激光激发表面等离激元波产生,从而导致激光能量在空间上的周期性分布并对材料表面烧蚀去除形成条纹结构雏形。当飞秒脉冲累积数目继续增加时,这些结构雏形将会提高入射激光与表面等离激元波的耦合效率,使得激光能量的空间周期性烧蚀效果增强。正是基于多脉冲作用的正反馈机制,共振激发的表面等离激元波与入射激光干涉最终导致亚波长周期条纹结构的产生。由于单束飞秒激光脉冲的时间间隔通常为1 μs~1 ms,脉冲作用之间的相互影响实际上是静态的,硬质的和不可调控的。

相对于脉冲持续时间来说,飞秒激光在材料表面诱导形成亚波长周期条纹结构是一个极其漫长的动力学过程,其中包含诸多瞬态物理阶段,例如:电子吸收激光能量后的热化、热电子与冷晶格之间的能量传递、材料表面熔化的热动力学、材料表面冷却和凝固等[46]。这些均将影响激光能量在材料表面的周期性吸收和烧蚀去除,从而使结构形成过程变得异常复杂。最近,人们提出利用飞秒激光泵浦-探测实验来研究材料表面周期条纹结构形成的超快动力学过程[55-58]。例如,Hohm等[55]研究了SiO2表面亚波长周期条纹结构形成的动态过程,通过测量其中衍射光强随探测时间的变化曲线,揭示了材料表面在入射光照后Dt=0.3~100 ps时间范围内形成瞬态折射率光栅的物理过程。Cheng等[58]采用飞秒激光泵浦-探测显微成像技术研究了金膜表面亚波长周期条纹结构的形成过程,直接观测到了材料表面在入射激光照射后Dt=80~800 ps延迟时间范围内出现条纹结构现象。事实上,在传统的泵浦-探测技术实验中,由于延时入射激光仅被用作探测信号,因此其强度必须非常微弱才能保证对材料激发过程无影响。相反,如果探测光强足够大,则其入射会对泵浦激光导致的瞬态物理过程形成干扰,从而实现对表面周期结构形成的调制作用,调制效果与探测激光入射的时间阶段密切相关。为此,人们提出了双束飞秒激光调控制备技术[59-63],其中先入射激光引发的材料瞬态物理过程对滞后入射激光作用的影响是动态的,软质的和可灵活调控的。为此,Hohm等[59-60]利用该技术分析研究了熔融石英、硅、钛等材料表面亚波长周期条纹结构的形成情况。Jiang等[61-62]通过改变双束激光的延迟时间(Dt=0~1 ps时),实现了亚波长条纹结构从低空间频率(Λ=550 nm)向高空间频率(Λ=255 nm)的转化。

由于亚波长周期条纹结构具有改变材料表面物理和化学性能的本领,因此在各个领域都具有广泛应用潜能。例如:作为衍射光栅能够产生结构色,可应用于激光打标、光学数据存储、防伪、加密、显示等领域[64-66];能够改变材料表面的浸润性,可应用于自清洁、防水、防冰、防腐、微流体等领域[67-71];能够增强材料表面对光吸收、透射和热辐射效率,可广泛应用于太阳能电池、照明LED光源、集成电路、平板显示等领域[72-74];能够产生表面增强拉曼散射效应,可用来高灵敏探测微量分子、生物病原体以及病毒[75-77];能够使材料表现出双折射性能,可用于控制透射光的能量和偏振,制作波片、矢量光束转化器、光学涡旋产生器等微纳光学器件[78-82];能够增加材料表面生物相容性,可应用于整形外科钛移植等[83-86]

然而,现阶段飞秒激光在制备表面周期结构方面仍然存在诸多问题。例如:表面结构形貌大多表现为一维光栅状分布,且容易出现空间弯曲、分叉和断裂等现象;其形成超快动力学过程和内在机理仍不十分清楚;采用光束聚焦方式导致激光作用区域较小,大面积制备耗时低效。另外,尽管二维周期结构可通过采用飞秒激光交叉扫描或者多束激光干涉法来获得[87-88],但其制备过程比较复杂,且形成的结构周期和单元尺寸多为微米量级。这些均严重制约了表面周期结构的快速发展和应用。因此,如何大面积快速制备高规整、高精度、多形状的表面结构是目前飞秒激光微纳加工领域面临的一个重要挑战。

2 提高亚波长周期条纹结构分布规整性的方法

由于飞秒激光诱导亚波长周期条纹结构与入射激光参数、材料性质以及加工环境密切相关,因此人们尝试从这三个方面来提高结构分布的均匀和规整性。

2.1 激光参数的优化

最近,Ruiz等[89]采用单束高重复频率线偏振飞秒激光(1030 nm, 500 fs, 1 MHz)并沿与激光偏振相垂直的方向移动扫描,在1 μm厚度的金属铬膜表面上实现了大面积高规整性一维周期条纹结构的制备,相应的扫描电子显微(SEM)结果如图1(a)所示,其中结构周期为Λ=910 nm,排列方向与入射激光偏振相垂直,制备效率为φ=1.5 cm2/min。另外,Oktem等[90]报道利用单束高重复频率线偏振飞秒激光(1030 nm,100 fs,1 MHz)在50 nm厚度的钛膜表面上实现了高规整性周期条纹结构产生,结果如图1(b)所示,其中结构周期为Λ=600~900 nm(依赖于膜层厚度),排列方向与入射激光偏振相平行。作者分析认为激光作用区域内各点之间相互独立和缺乏有效自修复功能是造成亚波长条纹结构不规则分布的主要原因。因此,他们提出利用非局域化的正反馈激发机制和局域化的负反馈调节机制来提高亚波长周期条纹结构的规整性。这里所谓的非局域正反馈机制是指在光斑尺寸(D<10 μm)照射区域内,任意位置处的光场分布实际上与其他位置处的散射和入射场叠加密切相关,从而造成整个光照射区域内各点之间的相互关联;局域化负反馈机制是指在形成结构过程中,结构深度或氧化层厚度增加到一定值时其形貌不再随激光累积而变化。

2.2 材料性质的选择

最近,Gnilitskyi等[91]将单束高重复频率线偏振飞秒激光(1030 nm,213 fs,600 kHz)通过扫描阵镜系统聚焦照射在钼膜、钛膜、金膜、铜、铝和不锈钢等多种金属材料上,分析比较了其中亚波长周期条纹结构的产生效果。研究表明,高规整性条纹结构仅在钼膜、钛膜和不锈钢三种金属表面得以实现,结构周期分别为Λ=845,737,901 nm,排列方向均与入射激光偏振相垂直,结果如图1(c)所示。该方法的制备速率较快为φ=3.5 cm2/min,比传统光刻技术小一个数量级。不仅如此,作者还通过引入结构方向角色散量来量化表征其空间排列规整性。针对上述三种材料表面周期结构计算获得的方向角色散量均小于δθ=10°,且金属钼表面的结构规整性最佳,约为δθ=5.3°。同时,作者分析认为金属表面等离激元波传播长度(与材料和激光波长有关)是影响亚波长条纹结构规整性的关键因素。若表面等离激元波的传播长度小于20 μm,则可形成高规整性亚波长结构;并且传播长度越短,亚波长结构的规整性就越高。相应的计算结果表明,波长较短的蓝色和近紫外飞秒激光能够在大多数金属表面诱导产生高规整性的亚波长周期条纹结构。

图 1. 单束线偏振飞秒激光在不同金属表面诱导产生的一维高规整性周期条纹结构。(a) 1 μm厚铬膜[89];(b) 50 nm厚钛膜[90];(c) 300 nm厚钼膜[91]

Fig. 1. High-regular one-dimensional periodic ripple structures obtained on several metal surfaces using linearly polarized single-beam femtosecond laser incidence. (a) 1 μm chromium film[89]; (b) 50 nm titanium film[90]; (c) 300 nm molybdenum film[91]

下载图片 查看所有图片

2.3 加工环境的改变

最近,本课题组的Wang等[92]在高真空环境下利用单束线偏振飞秒激光(800 nm,50 fs,1 kHz)经透镜聚焦在25 nm厚度的金属铬膜上,来提高表面亚波长周期条纹结构形成的规整性。研究结果表明,在给定光照和扫描条件下,当真空腔中的空气压强降低至P=1.0×10-4 Pa时,铬膜表面出现高规整性的平行沟槽结构,其中排列方向与入射激光偏振相垂直,结构周期为Λ=360 nm,刻槽宽度为w=150 nm,深度为h=120 nm,如图2(a)所示。需要强调的是,此时结构周期不仅远小于传统空气环境中的结果,而且结构周期在整个光斑和扫描区域内均保持一致,尽管入射飞秒光强为空间高斯分布。相比于文献[ 90-91],该方法制备获得的结构规整性不受扫描方向和光斑尺寸的影响。不仅如此,作者还通过采用柱透镜线聚焦方式实现了大面积高规整性亚波长周期条纹结构的产生,如图2(b)所示。基于加工样品表面拉曼信号的测量与分析,作者认为在真空环境下能够有效避免材料表面氧化和空气等离子体的热干扰,这是提高亚波长周期条纹结构均匀和规整性的主要原因。

图 2. 单束飞秒激光在1.0×10-4 Pa真空环境下在25 nm厚度铬膜表面产生的一维高规整性周期条纹结构[92]。 (a)采用透镜聚焦;(b)采用柱透镜聚焦

Fig. 2. Highly regular one-dimensional periodic ripple structures on 25 nm Cr film by linearly polarized single-beam femtosecond laser beam under vacuum condition of 1.0×10-4 Pa[92]. (a) Focusing with a convex lens; (b) focusing with a cylindrical lens

下载图片 查看所有图片

2.4 时间延迟双光束作用

最近,本课题组的郑昕等基于延迟时间可调的双束飞秒激光,提出利用调控材料表面瞬间非平衡态物理特性来提高亚波长周期条纹结构的规整性。具体实验过程为:首先将从钛宝石激光器输出的单束线偏振飞秒激光(800 nm,50 fs,1 kHz)经过钒酸钇(YVO4)双折射晶体后,获得空间上共线传输、偏振方向相互垂直、并具有特定延迟时间(Dt=1.2 ps)的双束飞秒激光,然后将其通过柱透镜聚焦在金属钨表面,制备获得了高规整性分布的一维亚波长周期条纹结构。研究发现,当双束飞秒激光的能量比值接近R=1∶3或3∶1时,则在光照区域内容易形成大面积的高规整性条纹结构,如图3(a)所示,其中结构周期为Λ=500 nm,结构排列与大能量光束的偏振方向相垂直。参照文献[ 91],计算获得的结构方向角色散量为δθ=4.3°,小于目前文献报道的所有情况,如图3(b)所示。该结果不仅证实了双束延时飞秒激光对于提高亚波长周期条纹结构规整的有效性,而且发现了激光能量之比所起的关键作用。

图 3. 双束延时飞秒激光在金属钨表面产生的大面积高规整性周期条纹结构。(a)结构形貌;(b)结构方向角色散量δθ

Fig. 3. Large-area high-regular one-dimensional periodic ripple structures formed on tungsten surface using temporally delayed double femtosecond laser beams with orthogonal polarizations. (a) Structural morphology; (b) calcualted dispersion δθ in the structure orientation angle

下载图片 查看所有图片

3 共线延时飞激光对亚波长周期结构空间周期的动态调控

本课题组的王瑞平[93]最近通过实验研究发现,单束蓝色飞秒激光(400 nm,50 fs,1kHz)在金属钼表面制备的一维条纹结构容易产生空间分裂和断裂现象,从而严重影响了结构的整体规整性。为了解决该问题,作者采用共线传输、偏振方向平行、延迟时间可调和具有不同中心波长的双束飞秒激光(400 nm、800 nm,50 fs,1 kHz)聚焦照射在金属钼表面,其中强度低于材料烧蚀阈值的近红外(λ=800 nm)飞秒激光先入射在样品表面。实验结果发现,在双束飞秒激光延迟时间为Dt=10 ps时,金属钼表面可以形成规整的条纹结构分布,相应的结构周期为Λ=280 nm,排列方向与激光偏振相垂直,如图4(a)所示;当延迟时间增至Dt=100 ps时,激光诱导产生的条纹结构周期减小一半为Λ=140 nm,即从低空间频率转化成高空间频率类型,但结构排列方向保持不变,如图4(b)所示;若继续增加延迟时间至Dt=150 ps,则金属钼表面再次形成类似于单束光作用形成的准周期性条纹结构。实验测得条纹结构周期随双束激光延迟时间的演化曲线如图4(c)所示。相对于单束飞秒激光作用情况,双色延时飞秒激光诱导产生亚波长结构的规整性得到了明显提升,并且通过改变双束激光的延迟时间实现了条纹结构周期的互相转化。

图 4. 双色延时飞秒激光在金属钼表面诱导产生的亚波长周期条纹结构[93]。(a) Dt=10 ps和(b) Dt=100 ps时的结构形貌;(c)结构周期随双束激光延迟时间的变化关系

Fig. 4. One-dimensional subwavelength periodic ripple structures formed on Molybdenum surface using temporally delayed double femtosecond laser beams with different wavelengths[93]. (a)(b) Structural morphology at the time delay of Dt=10 ps andDt=100 ps, respectively; (c) variation of the structure period as function of the time delay between double laser beams

下载图片 查看所有图片

4 共线延时飞秒激光对亚波长周期结构方向的动态调控

在单束飞秒激光作用的实验中,虽然亚波长周期结构的排列方向可以通过入射激光偏振方向的改变获得调协,但这种方法实际上是基于材料“稳态”情况而操作,因此根本没有涉及其中的超快动力学过程,从而无法实现对结构形成形貌及其他特征的有效改善。接下来,将重点介绍利用共线延时双束和三束飞秒激光在材料“超快非平衡态”情况下,对亚波长周期条纹结构排列方向进行灵活调控的研究进展,并且揭示其中的新现象,新机理。

4.1 对金属表面周期结构方向的动态调控

Bonse等[54,94]实验研究了偏振方向垂直的双束飞秒激光在同时照射(Dt=0 ps)情况下,在金属钛材料表面诱导亚波长周期条纹结构的情况,结果表明,此时形成结构方向实际上是由双束飞秒激光的相干叠加作用来决定,并随双束飞秒激光能量比发生改变。最近,本课题组的赵波[95]采用能量相同、共线传输和不同线偏振的双束飞秒激光(800 nm, 50 fs, 1 kHz)经物镜聚焦照射在单晶铜表面,分析研究了周期条纹结构排列方向在双束激光延迟时间Dt=0~60 ps范围的动态演化过程[95]。在双束激光线偏振方向夹角为θ=45°的情况下,实验观测到了Dt=0 ps时表面周期条纹结构的形成情况,如图5(a)所示,其中结构方向的倾斜角(α=26°)约为双束激光线偏振方向夹角(θ=45°)的一半值,也即结构方向与双束激光偏振夹角的角平分线方向相垂直。当改变其中一束激光线偏振方向时,所形成的结构方向也将发生变化,但它始终为激光偏振方向夹角的一半。

实验中通过逐步增加双束激光的延迟时间,获得了表面周期结构方向倾斜角随延迟时间的演变过程,结果如图5(b)所示,其中包含三个不同的变化过程:即在延迟时间Dt<12 ps 范围内结构方向倾斜角出现周期性振荡行为;当延迟时间Dt>12 ps时结构方向倾斜角出现单调衰减行为;当延迟时间增至Dt=40 ps时结构方向倾斜角趋近于零并保持稳定,此时结构方向与滞后入射的飞秒激光线偏振方向相垂直。事实上,针对实验结果在延迟时间Dt<12 ps范围内的振荡行为,可通过一个简谐振动函数就能够获得较好拟合,从而获得该条件下结构方向倾斜角随延迟时间振荡变化的最大幅度为Dα=9°,振荡频率为f=0.56 THz。

此外,作者还研究了双束激光的线偏振方向夹角和脉冲时间宽度对亚波长周期条纹结构方向倾斜随延迟时间演变过程的影响。当双束激光偏振夹角从θ=70°减至θ=30°时,结构方向倾斜角均出现类似的周期振荡和单调衰减行为,但在延迟时间Dt<12 ps范围内,结构方向倾斜角的振荡幅度从Dα=14°减至Dα=7°,振荡频率在f=0.48~0.6 THz范围内变化;在延迟时间Dt>12 ps范围内,结构方向倾斜角的衰减速率随偏振夹角增大而变快;当延迟时间大于Dt=40 ps时,结构方向倾斜角全部趋近于零。在双束激光偏振夹角为θ=45°情况下,当脉冲时间宽度增加至τ=1 ps时,结构方向倾斜角仍然出现了周期振荡和单调衰减行为,但此时其振荡频率和幅值分别减至Dα=5°和f=0.3 THz;若脉冲时间宽度继续增加至τ≥10 ps,则结构方向倾斜角无振荡行为出现,仅发现其随延迟时间增加的单调衰减行为。相关的理论分析认为,这种结构方向倾斜的振荡行为是由先入射飞秒激光在金属表面激发非平衡物理过程,其中包括瞬态折射率光栅、相干声学声子和晶格硬化等效应,然后对滞后入射飞秒激光非共线激发的表面等离激元波进行调控而产生。该研究不仅提供了一种诊断记录飞秒激光作用超快动力学过程的新方法,而且为有效调控微纳米结构制备提供了新思路[95]

图 5. 双束飞秒激光在单晶铜表面诱导亚波长周期条纹结构随延迟时间的演变过程[95],其中两束激光偏振方向的夹角为θ=45°。(a)在零延时情况的结构形貌;(b)结构方向倾斜角随延迟时间的变化曲线

Fig. 5. Temporal evolution of the subwavelength periodic ripple structures formed on copper surface using temporally delayed double femtosecond laser beams with the polarization intersection angle of θ=45°[95]. (a) Structural morphology at zero time delay incidence; (b) measured time-delay dependent slantwise orientation angle of the structures

下载图片 查看所有图片

4.2 对半导体表面周期结构方向的动态调控

类似于单晶铜情况,本课题组的He等[96-97]采用不同线偏振方向的双束飞秒激光(800 nm,50 fs,1 kHz)聚焦在半导体4H-SiC表面,分析研究了亚波长周期条纹结构方向随延迟时间的演变过程。图6(a)所示为双束飞秒激光在偏振方向夹角为θ=30°、延迟时间为Dt=0 ps的情况下,材料表面形成的亚波长周期条纹结构,相应的结构方向倾斜角为α=θ/2≈18°。图6(b)给出了在双束激光线偏振方向夹角为 θ=30°时,4H-SiC材料表面亚波长条纹结构方向倾斜角在延迟时间Dt=0~100 ps范围内的演变过程。不同于单晶铜情况,此时结构方向倾斜角随延迟时间没有表现出周期性的振荡行为,而是仅为单调衰减变化趋势。当双束激光延迟时间从Dt=0增至Dt =20 ps时,实验测得结构方向倾斜角从α=18°减小至α=13.5°。若继续增加延迟时间Dt,则结构方向倾斜角始终保持约为αconst=13.5°,这明显不同于单晶铜表面的实验结果(即α=0°)。作者通过数学拟合获得的结构方向倾斜角衰减时间常数为τ1=6.2 ps。该研究还发现了在不同线偏振方向夹角情况下,结构方向变化的时间衰减常数几乎保持相等(τ1=6.1~6.6 ps)。

图 6. 偏振夹角为θ=30°的双束延时飞秒激光在4H-SiC表面诱导亚波长周期条纹结构随延迟时间的演化过程[96-97]。(a)在零延迟照射时结构形貌;(b)条纹倾斜角随延迟时间的变化曲线

Fig. 6. Temporal evolution of the subwavelength periodic ripple structures formed on 4H-SiC surface using temporally delayed double femtosecond laser beams with the polarization intersection angle of θ=30°[96-97]. (a) Structural morphology at zero time delay incidence; (b) measured time-delay dependent slantwise orientation angle of the structures

下载图片 查看所有图片

随后,作者分析认为上述表面结构方向的改变行为实质上是来源于先入射飞秒激光在材料表面激发的瞬态折射率光栅,对滞后入射飞秒激光非共线激发表面等离激元波的调控作用。但由于金属与半导体材料在性质上存在区别,因此飞秒激光作用过程中的超快物理现象也不尽相同。对于4H-SiC材料而言,当延迟时间为Dt= 0~20 ps时,材料中Auger复合效应的存在使得先入射飞秒激光激发的载流子浓度快速减小,从而导致其引发的瞬态折射率光栅效应急剧减弱,并对滞后入射飞秒激光非共线激发表面等离激元波的调控作用也快速单调变化,最终使得结构方向的倾斜角出现快速单调减小行为。在延迟时间Dt>20 ps情况下,材料中Auger复合效应消失和4H-SiC材料较小热导率将会使得瞬态折射率光栅的热弛豫衰减过程变缓,并对滞后入射激光非共线激发表面等离激元波的调控行为变得微弱,从而导致结构方向倾斜角维持在一个非零值附近。

不仅如此,作者还采用偏振方向不同的三束延时飞秒激光,分析研究了4H-SiC材料表面周期结构产生情况[98]。其中三束飞秒激光线偏振方向互不相同,它们之间的夹角分别为θ1=θ2=30°,每两束激光之间的延迟时间分别为Δt1=10 ps和Δt2=42 ps。典型实验结果如图7(a)所示,此时材料表面形成条纹结构的规整性得到了显著提高,其空间周期增至约Λ=680 nm,排列方向与三束飞秒激光的偏振方向既不垂直也不平行。图7(b)~(c)分别给出了延迟时间为Dt1=10 ps和 60 ps的情况下,周期结构方向随延迟时间Dt2=0~60 ps的演变过程。进一步的分析认为,此时周期结构方向的变化机理同样是基于先入射飞秒激光引发瞬态折射率光栅,并对滞后入射激光非共线激发表面等离激元波进行动态调控的结果。

图 7. 偏振夹角为θ?=θ2=30° 的三束飞秒激光在4H-SiC表面诱导亚波长周期条纹结构随延迟时间的演化过程[98]。(a)在Δt1=10 ps,Δt2=42 ps情况下形成的条纹结构形貌;(b)在Δt1=10

Fig. 7. Temporal evolution of the subwavelength periodic ripple structures formed on 4H-SiC surface using temporally delayed three femtosecond laser beams with the polarization intersection angles of θ1=θ2=30°[98]. (a) Structural morphology at Δt1=10 ps and Δt2=42 ps; (b)(c) measured time-delay dependent slantwise orientation angle of the structures at Δt1=10 ps and

下载图片 查看所有图片

5 共线延时飞秒激光制备多类型二维亚波长周期阵列结构

目前,金属表面二维周期微结构可利用飞秒激光交叉直写和多束干涉等方法来获得[87-88],但通常情况下这些结构周期和单元尺寸为微米量级,难以满足纳米光子器件的制备和应用需求。本小节将重点介绍本课题组在利用延时飞秒激光调控制备多类型二维亚波长周期阵列结构方面取得的研究进展。

5.1 在金属表面调控制备二维亚波长圆包、三角形和菱形周期阵列结构

实验中,将从钛宝石激光器输出的单束飞秒激光(1 kHz, 800 nm, 50 fs)通过钒酸钇双折射晶体后,产生偏振方向相互垂直且有特定延迟时间(Dt=1.2 ps)的双束共线传输飞秒激光,它们经柱透镜聚焦后垂直照射在块体金属钨表面。当入射激光总能量为E=0.21 mJ,能量比为R=1∶3,扫描速度为v=0.03 mm/s时,制备获得了高规整分布的二维圆包状周期阵列结构[99-100],如图8(a)所示。其中两个周期排列方向分别垂直于双束飞秒激光的线偏振方向,结构周期均为Λ=560 nm,单元直径约为d=320 nm,结构深度约为h=150 nm。基于光学反射谱测量实验发现这种结构在近红外λ=0.7~2 μm波段范围具有明显减反射(或者吸收增强)效应。特别是在波长λ=1320 nm位置处出现了一个反射极小值,这可能与二维周期结构引起的表面波共振激发有关。不仅如此,实验研究还发现,当双束激光延迟时间增至Dt=130 ps 时,二维周期结构单元的几何形貌将转变为立方柱状,其中沿一个排列方向的空间周期缩小约一半值,同时二维结构的规整性也变差;若延迟时间增至Dt=160 ps 时,二维周期结构开始消失,取而代之的是不规则分布的传统一维条纹结构。

另外,实验中如果将样品位置移至光束焦点前0.2 mm处,并在延迟时间Dt=1.2 ps、总能量E=0.18 mJ、能量比R=1∶1的条件下,可制备获得二维分布的高规整三角形周期阵列结构[99,101],如图8(b)所示。该结构可看作是由三组排列方向不同的一维亚波长周期刻槽结构在空间上叠加形成。其中在三个不同方向上的结构排列周期均为Λ=610 nm,刻槽宽度为w=130 nm,结构深度为h=100 nm,三角形结构单元的边长为l=480 nm。或者说,顶点相邻的六个三角形结构可以组成一个类蜂窝状(正六边形)图案。同样地,实验测得这种结构在近红外λ=0.7~2 μm波段范围内也具有明显的减反射(吸收增强)效应。但与圆包状结构相比较,其反射极小值对应的波长位置(λ=1000 nm)发生了蓝移。不仅如此,利用延迟时间为Dt=5 ps的双束飞秒激光在金属钨表面还获得了高规整分布的二维菱形周期阵列结构[99],如图8(c)所示。显然,该结构是两组排列方向互成126°的一维亚波长周期条纹结构在空间上交叉叠加形成,但它们的排列方向既不垂直也不平行于两束激光的线偏振方向,其中每个菱形结构单元的边长约为l=660 nm,排列周期均为Λ=760 nm。

图 8. 偏振方向垂直的双束延时飞秒激光在金属钨表面形成的二维周期阵列结构。(a)圆包状[100];(b)三角形[101];(c)菱形[99]

Fig. 8. Various types of two-dimensional periodic structure arrays on tungsten surface using temporally delayed double femtosecond laser beams with orthogonal polarizations. (a) Spherical cap[100]; (b) triangular[101]; (c) rhombus[99]

下载图片 查看所有图片

通过总结分析,可以确定双束飞秒激光的能量密度和能量比是造成材料表面阵列结构形貌不同的主要因素。不同构型结构的形成均与双束飞秒激光激发材料超快动力学过程之间的关联耦合作用密切相关。二维圆包状周期阵列结构是由双束飞秒激光在材料表面各自激发瞬态折射率(温度)光栅并随后发生关联而形成。而在二维三角形周期阵列结构形成过程中,在先入射飞秒激光激发的瞬态折射率光栅调制作用下,滞后入射的飞秒激光通过非共线激发方式产生两组新的表面等离激元波,从而形成三角形周期阵列结构。

5.2 在金属表面调控制备二维亚波长椭圆状周期阵列结构

最近,本课题组的Cong等[102]在实验上采用两束偏振方向垂直和中心波长不相同的飞秒激光(800 nm,400 nm,50 fs,1 kHz)共线延时聚焦照射,在块体金属钼表面获得了高规整性二维椭圆状周期阵列结构[102],如图9(a)所示,其中结构周期分别为Λ=616 nm 和Λ=236 nm。二维亚波长椭圆状周期阵列结构排列方向可通过改变飞秒激光偏振特性获得调控。另外,研究发现,该类型结构在双束激光延迟时间Dt=-30~200 ps(正延迟时间代表长波长激光先入射)范围内均可形成,且结构规整性在Dt=10 ps时达到最优。实验测得随着延迟时间的增加,结构周期呈现减小和增加的相反趋势,如图9(b)、(c)所示。值得注意的是,两个结构周期分别在延迟时间Dt=80~140 ps 和Dt=30~60 ps范围内出现突然减小现象,从而表明双束飞秒激光的作用过程发生了某种程度的关联耦合。

图 9. 偏振垂直的双色延时飞秒激光在金属钼表面诱导形成的二维椭圆状周期阵列结构[102]。(a)结构形貌;结构周期在(b)水平和(c)垂直方向上随延迟时间的变化曲线

Fig. 9. Two-dimensional elliptical-shaped periodic structure arrays formed on molybdenum surface using temporally delayed two-color femtosecond laser beams with orthogonal polarizations[102]. (a) Surface morphology; (b)(c) measured time-delay dependent structure period in the vertical and horizontal directions, respectively

下载图片 查看所有图片

5.3 在金属表面调控制备二维亚波长条纹-颗粒复合结构

最近,本课题组的秦婉婉等人采用单束线偏振的蓝色飞秒激光(400 nm,50 fs,1 kHz)经物镜聚焦垂直照射在单晶铜表面,观测到了二维亚波长的条纹-颗粒复合结构[103],如图10(a)所示。其中每条平行沟槽内均存在周期性排布的纳米颗粒链,条纹分布周期为Λ=270 nm,沟槽宽度约为w=115 nm,颗粒分布周期约为 Λ=200 nm,颗粒直径约为d=130 nm。为了进一步加强这种结构类型的形成,作者利用共线延时照射的不同波长飞秒激光经物镜聚焦在单晶铜表面,其中圆偏振的近红外飞秒激光(λ=800 nm)先入射,线偏振的蓝色飞秒

激光滞后入射。在时间延迟为Dt=28 ps、激光通量F800=0.04 J/cm2F400 = 0.1 J/cm2条件下,获得了如图10(b)所示的实验结果。与单束蓝色飞秒激光作用结果相比较,此时沟槽内纳米颗粒的构型更加接近圆形,且其排列周期和颗粒直径均获得减小。图10(c)~(f)分别给出了滞后入射的蓝色飞秒激光在不同通量时,表面复合结构中沟槽宽度w、颗粒直径d、周期Λp和周期与直径的比值Λp/d等参数随先入射近红外飞秒激光通量的变化曲线。作者分析认为在二维亚波长条纹-纳米颗粒复合结构产生过程中,条纹结构是由入射激光与材料表面等离激元波相互干涉而形成,而纳米颗粒主要是由在材料表面周期性烧蚀去除过程中刻槽内金属纳米液柱在Plateau-Rayleigh不稳定性作用下发生有序断裂而形成。先入射的圆偏振近红外飞秒激光可以通过调控金属表面的瞬态物理性能,实现对二维复合结构形貌特征的动态调控。

图 10. 单束和双色延时飞秒激光在金属铜表面诱导形成的二维亚波长条纹-纳米颗粒复合结构[103]。(a)单束蓝色飞秒激光作用结果;(b)双色延时飞秒激光作用结果;(c)~(f)沟槽宽度w、颗粒直径d、颗粒周期Λp、颗粒周期与直径比值Λp等参数随先入射激光通量的变化曲线。

Fig. 10. Two-dimensional subwavelength ripple-particle hybrid structures formed on the copper surfaces using different femtosecond lasers[103

下载图片 查看所有图片

6 结束语

本文重点论述了飞秒激光诱导材料表面亚波长周期表面结构过程中形貌规整性差、结构单一、调控手段不灵活、制备效率低等问题的解决方法。在单束飞秒激光照射情况下,通过设置扫描方向、限制光斑尺寸、选择特性材料和引入高真空加工环境等方法显著提高了一维亚波长周期条纹结构在金属薄膜表面形成的规整性;在偏振垂直的双束延时飞秒激光照射情况下,通过严格控制激光脉冲能量比在块体金属钨表面制备获得前所未有的高规整一维亚波长周期条纹结构;在偏振平行的双色飞秒激光照射下,通过改变延迟时间实现了金属钼表面一维亚波长周期条纹结构周期在高和低空间频率内的转化;利用偏振垂直的双束延时飞秒激光在金属钨表面制备获得了具有不同形貌特征(圆包状、三角形、菱形)二维亚波长周期阵列结构,并通过改变激光能量密度和能量配比实现了结构形貌的互相转化;同时利用双色延时飞秒激光分别在金属钼和铜表面制备形成了二维亚波长椭圆周期阵列和条纹-纳米颗粒复合结构,并实现了对其分布周期、单元尺寸等结构参数的灵活调控;另外,在利用共线延时飞秒激光束调控制备周期表面结构的同时,还发现了材料中的晶格硬化、非热声学声子激发、瞬态折射率形成、表面等离激元波非共线激发、Plateau-Rayleigh不稳定性等一系列超快物理现象。目前采用柱透镜聚焦方式将飞秒激光诱导周期表面结构的制备效率提高到了接近工业化生产水平。

总之,尽管说飞秒激光诱导亚波长周期表面结构在形貌特征、排列分布、空间周期和制备效率等方面已经获得了一定程度的控制产生,但相应的超快动力学过程和物理机制仍缺乏统一认识。特别是,当采用皮秒时间延迟多束飞秒激光照射时,如何全面和深刻理解其中多个光-物质作用动态过程之间的关联与耦合,包括表面等离激元在金属非平衡状态下的激发与调控,及其后续能量弛豫对表面微纳结构产生的影响等,均是未来需要深入探索和解决的科学问题。另一方面,如何利用飞秒激光在金属表面实现微纳结构的多维度、多类型、高效率和高质量构建,仍然是这一研究领域有待解决的关键技术问题。我们相信针对上述问题研究呈现出的新现象和新规律不仅将会极大丰富激光与物质作用的研究体系,而且也将有助于解决当前普遍存在的加工效率和加工精度之间的固有矛盾,从而引发人们对飞秒激光微纳制造手段之精彩、发展潜力之深远的惊叹!

参考文献

[1] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1965, 36(11): 3688-3689.

[2] Emmony D C, Howson R P, Willis L J. Laser mirror damage in germanium at 10.6 μm[J]. Applied Physics Letters, 1973, 23(11): 598-600.

[3] Keilmann F, Bai Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A Solids and Surfaces, 1982, 29(1): 9-18.

[4] Sipe J E, Young J F, Preston J S, et al. Laser-induced periodic surface structure. I. Theory[J]. Physical Review B, 1983, 27(2): 1141-1154.

[5] Zhou G S, Fauchet P M, Siegman A E. Growth of spontaneous periodic surface structures on solids during laser illumination[J]. Physical Review B, 1982, 26(10): 5366-5381.

[6] van Driel H M, Sipe J E, Young J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Physical Review Letters, 1982, 49(26): 1955-1958.

[7] Young J F. Preston J S,van Driel H M, et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass[J]. Physical Review B, 1983, 27(2): 1155-1172.

[8] Young J F. Sipe J E, van Driel H M. Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium[J]. Physical Review B, 1984, 30(4): 2001-2015.

[9] Seminogov V N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics[J]. Soviet Physics Uspekhi, 1985, 28(12): 1084-1124.

[10] Ozkan A M, Malshe A P, Railkar T A, et al. Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters[J]. Applied Physics Letters, 1999, 75(23): 3716-3718.

[11] Borowiec A, Haugen H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25): 4462-4464.

[12] Yang J J, Wang R, Liu W, et al. Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 215305.

[13] Xue L, Yang J J. Yang, et al. Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses[J]. Applied Physics A, 2012, 109(2): 357-365.

[14] 吴勃, 周明, 李保家, 等. 飞秒激光脉冲诱导不锈钢表面微结构研究[J]. 激光与光电子学进展, 2013, 50(11): 111406.

    Wu B, Zhou M, Li B J, et al. Microstructures on stainless steel surface induced by femtosecond laser pulse[J]. Laser & Optoelectronics Progress, 2013, 50(11): 111406.

[15] Wang L, Chen Q D, Cao X W, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 2017, 6(12): e17112.

[16] Bonse J, Krüger J, Höhm S, et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 2012, 24(4): 042006.

[17] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 2005, 97(1): 013538.

[18] Huang M, Zhao F L, Cheng Y, et al. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass[J]. Optics Express, 2010, 18(S4): A600-A619.

[19] Hou S S, Huo Y Y, Xiong P X, et al. Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses[J]. Journal of Physics D: Applied Physics, 2011, 44(50): 505401.

[20] Qi L T, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel[J]. Optics Letters, 2009, 34(12): 1846-1848.

[21] Han Y H, Zhao X L, Qu S L. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass[J]. Optics Express, 2011, 19(20): 19150-19155.

[22] Höhm S, Rosenfeld A, Krüger J, et al. Femtosecond laser-induced periodic surface structures on silica[J]. Journal of Applied Physics, 2012, 112(1): 014901.

[23] Bonse J, Sturm H, Schmidt D, et al. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air[J]. Applied Physics A Materials Science & Processing, 2000, 71(6): 657-665.

[24] Bonse J, Höhm S, Rosenfeld A, et al. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air[J]. Applied Physics A, 2013, 110(3): 547-551.

[25] Jia T Q, Zhao F L, Huang M, et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams[J]. Applied Physics Letters, 2006, 88(11): 111117.

[26] 王浩竹, 杨丰赫, 杨帆, 等. 飞秒激光在金属钼表面诱导产生纳米量级周期条纹结构的研究[J]. 中国激光, 2015, 42(1): 0103001.

    Wang H Z, Yang F H, Yang F, et al. Investigation of femtosecond-laser induced periodic surface structure on molybdenum[J]. Chinese Journal of Lasers, 2015, 42(1): 0103001.

[27] Golosov E V, Ionin A A, Kolobov Y R, et al. Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief[J]. Journal of Experimental and Theoretical Physics, 2011, 113(1): 14-26.

[28] Hsu E M. Crawford T H R,Tiedje H F, et al. Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm[J]. Applied Physics Letters, 2007, 91(11): 111102.

[29] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 2005, 97(1): 013538.

[30] Yang Y, Yang J, Xue L, et al. Surface patterning on periodicity of femtosecond laser-induced ripples[J]. Applied Physics Letters, 2010, 97(14): 141101.

[31] Bonse J, Krüger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 2010, 108(3): 034903.

[32] Sakabe S, Hashida M, Tokita S, et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 2009, 79(3): 033409.

[33] Okamuro K, Hashida M, Miyasaka Y, et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B, 2010, 82(16): 165417.

[34] Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

[35] Golosov E V. Emel'yanov V I, Ionin A A, et al. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. JETP Letters, 2009, 90(2): 107-110.

[36] Shen M Y, Carey J E, Crouch C H, et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Letters, 2008, 8(7): 2087-2091.

[37] Korol'Kov V P, Ionin A A, Kudryashov S I, et al. Surface nanostructuring of Ni/Cu foilsby femtosecond laser pulses[J]. Quantum Electronics, 2011, 41(4): 387-392.

[38] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances[J]. Progress in Quantum Electronics, 2014, 38(3): 119-156.

[39] Tang Y F, Yang J J, Zhao B, et al. Control of periodic ripples growth on metals by femtosecond laser ellipticity[J]. Optics Express, 2012, 20(23): 25826-25826.

[40] J J Nivas J, He S T, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a Q-plate[J]. Scientific Reports, 2015, 5: 17929.

[41] Ouyang J, Perrie W, Allegre O J, et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring[J]. Optics Express, 2015, 23(10): 12562-12572.

[42] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10): 104910.

[43] Huang M, Zhao F L, Cheng Y, et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062-4070.

[44] Miyaji G, Miyazaki K. Origin of periodicity innanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 2008, 16(20): 16265-16271.

[45] Garrelie F, Colombier J P, Pigeon F, et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Optics Express, 2011, 19(10): 9035.

[46] Derrien J Y, Krüger J, Itina T E, et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon[J]. Optics Express, 2013, 21(24): 29643.

[47] Reif J, Varlamova O, Costache F. Femtosecond laser induced nanostructure formation: self-organization control parameters[J]. Applied Physics A, 2008, 92(4): 1019-1024.

[48] Wu X J, Jia T Q, Zhao F L, et al. Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation[J]. Applied Physics A, 2007, 86(4): 491-495.

[49] Dufft D, Rosenfeld A, Das S K, et al. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3): 034908.

[50] Sedao X, Shugaev M V, Wu C P, et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification[J]. ACS Nano, 2016, 10(7): 6995-7007.

[51] Volkov S N, Kaplan A E, Miyazaki K. Evanescent field at nanocorrugated dielectric surface[J]. Applied Physics Letters, 2009, 94(4): 041104.

[52] Martsinovskiǐ G A, Shandybina G D, Smirnov D S, et al. Ultrashort excitations of surface polaritons and waveguide modes in semiconductors[J]. Optics and Spectroscopy, 2008, 105(1): 67-72.

[53] Straub M, Afshar M, Feili D, et al. Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon[J]. Journal of Applied Physics, 2012, 111(12): 124315.

[54] Bonse J, Hohm S, Kirner S V, et al. Laser-induced periodic surface structures: a scientific evergreen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(3): 9000615.

[55] Höhm S, Rosenfeld A, Krüger J, et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica[J]. Applied Physics Letters, 2013, 102(5): 054102.

[56] Jia X, Jia T Q, Peng N N, et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. Journal of Applied Physics, 2014, 115(14): 143102.

[57] Kafka K R P, Austin D R, Li H, et al. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove[J]. Optics Express, 2015, 23(15): 19432-19441.

[58] Cheng K, Liu J, Cao K, et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film[J]. Physical Review B, 2018, 98(18): 184106.

[59] Höhm S, Herzlieb M, Rosenfeld A, et al. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science, 2016, 374: 331-338.

[60] Höhm S, Rohloff M, Rosenfeld A, et al. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences[J]. Applied Physics A, 2013, 110(3): 553-557.

[61] Jiang L, Shi X S, Li X, et al. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains[J]. Optics Express, 2012, 20(19): 21505-21511.

[62] Jiang L, Wang A D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 2018, 7(2): 17134.

[63] Gedvilas M, Mikšys J. Ra cˇiukaitis G. Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation[J]. RSC Advances, 2015, 5(92): 75075-75080.

[64] 李阳博, 柏锋, 范文中, 等. 飞秒激光金属着色颜色差分析[J]. 光学学报, 2016, 36(7): 0714003.

    Li Y B, Bai F, Fan W Z, et al. Color difference analysis of femtosecond laser colorized metals[J]. Acta Optica Sinica, 2016, 36(7): 0714003.

[65] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 2010, 18(3): 2913-2924.

[66] Yao J W, Zhang C Y, Liu H Y, et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses[J]. Applied Surface Science, 2012, 258(19): 7625-7632.

[67] Zorba V, Persano L, Pisignano D, et al. Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation[J]. Nanotechnology, 2006, 17(13): 3234-3238.

[68] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.

[69] 龙江游, 范培迅, 龚鼎为, 等. 超快激光制备具有特殊浸润性的仿生表面[J]. 中国激光, 2016, 43(8): 0800001.

    Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

[70] Blossey R. Self-cleaning surfaces: virtual realities[J]. Nature Materials, 2003, 2(5): 301-306.

[71] Ranella A, Barberoglou M, Bakogianni S, et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 2010, 6(7): 2711-2720.

[72] Volkov R V, Golishnikov D M, Gordienko V M, et al. Overheated plasma at the surface of a target with a periodic structure induced by femtosecond laser radiation[J]. Journal of Experimental and Theoretical Physics Letters, 2003, 77(9): 473-476.

[73] Karabutov A V, Frolov V D, Loubnin E N, et al. Low-threshold field electron emission of Si micro-tip arrays produced by laser ablation[J]. Applied Physics A: Materials Science & Processing, 2003, 76(3): 413-416.

[74] Zorba V, Tzanetakis P, Fotakis C, et al. Silicon electron emitters fabricated by ultraviolet laser pulses[J]. Applied Physics Letters, 2006, 88(8): 081103.

[75] Diebold E D, Mack N H, Doorn S K, et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering[J]. Langmuir, 2009, 25(3): 1790-1794.

[76] Buividas R, Fahim N. Juodkazyt e· J, et al. Novel method to determine the actual surface area of a laser-nanotextured sensor[J]. Applied Physics A, 2014, 114(1): 169-175.

[77] MessaoudiH, Kumar DasS, LangeJ, et al.Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules[M] ∥Progress in Nonlinear Nano-Optics. Cham: Springer International Publishing, 2014: 207- 219.

[78] Born M, Wolf E, Hecht E. Principles of optics: electromagnetic theory of propagation, interference and diffraction oflight[J]. Physics Today, 2000, 53(10): 77-78.

[79] Mikutis M, Kudrius T, Šlekys G, et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 2013, 3(11): 1862.

[80] Beresna M. Gecevi cˇius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

[81] Richter S, Heinrich M, Döring S, et al. Nanogratings in fused silica: Formation, control, and applications[J]. Journal of Laser Applications, 2012, 24(4): 042008.

[82] Cheng G H, Liu Q, Wang Y S, et al. Three-dimensional multilevel memory based on laser-polarization-dependence birefringence[J]. Chinese Optics Letters, 2006, 4(2): 111-113.

[83] Yang Yang J J, Liang C Y, et al. Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility[J]. Optics Express, 2009, 17(23): 21124-21133.

[84] Bush J R, Nayak B K, Nair L S, et al. Improved bio-implant using ultrafast laser induced self-assembled nanotexture in titanium[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 97B(2): 299-305.

[85] Cunha A, Elie A M, Plawinski L, et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 2016, 360: 485-493.

[86] Shinonaga T, Tsukamoto M, Kawa T, et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium[J]. Applied Physics B, 2015, 119(3): 493-496.

[87] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.

[88] Li X, Feng D H, Jia T Q, et al. Fabrication of a two-dimensional periodic microflower array by three interfered femtosecond laser pulses on Al: ZnO thin films[J]. New Journal of Physics, 2010, 12(4): 043025.

[89] Ruizde la Cruz A, Lahoz R, Siegel J, et al. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser[J]. Optics Letters, 2014, 39(8): 2491.

[90] Öktem B, Pavlov I, Ilday S, et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nature Photonics, 2013, 7(11): 897-901.

[91] Gnilitskyi I. Derrien ThibaultJ Y, Levy Y, et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity[J]. Scientific Reports, 2017, 7: 8485.

[92] Wang F, Zhao B, Lei Y H, et al. Producing anomalous uniform periodic nanostructures on Cr thin films by femtosecond laser irradiation in vacuum[J]. Optics Letters, 2020, 45(6): 1301.

[93] 王瑞平. 双色飞秒激光对金属表面周期纳米结构的调控生长[D]. 天津: 南开大学, 2016: 28- 35.

    Wang RP. Investigation of controllablefabricating periodicnanostructures on the metal surface by dual-color femtosecond laser pulses[D]. Tianjin: Nankai University, 2016: 28- 35.

[94] Hashida M, Nishii T, Miyasaka Y, et al. Orientation of periodic grating structures controlled by double-pulse irradiation[J]. Applied Physics A, 2016, 122(4): 484.

[95] 赵波. 光学诱导金属表面微观相干振荡及其影响特性研究[D]. 天津: 南开大学, 2015: 76- 90.

    ZhaoB. Light-induced microscopic coherent oscillations and their physical influences on metal surfaces[D]. Tianjin: Nankai University, 2015: 76- 90.

[96] He W L, Yang J J. Formation of slantwise orientated nanoscale ripple structures on a single-crystal 4H-SiC surface by time-delayed double femtosecond laser pulses[J]. Applied Physics A, 2017, 123(8): 518.

[97] He W L, Yang J J. Probing ultrafast nonequilibrium dynamics in single-crystal SiC through surface nanostructures induced by femtosecond laser pulses[J]. Journal of Applied Physics, 2017, 121(12): 123108.

[98] He W L, Yang J J, Guo C L. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations[J]. Optics Express, 2017, 25(5): 5156-5168.

[99] 乔红贞. 飞秒激光制备二维亚微米金属阵列结构的研究[D]. 天津:南开大学, 2015: 32- 66.

    Qiao HZ. Investigation of femtosecond laser-induced two-dimensional metallic array submicron structures[D]. Tianjin: Nankai University, 2016: 32- 66.

[100] Qiao H Z, Yang J J, Wang F, et al. Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces[J]. Optics Express, 2015, 23(20): 26617-26627.

[101] Qiao H Z, Yang J J, Li J, et al. Formation of subwavelength periodic triangular arrays on tungsten through double-pulsed femtosecond laser irradiation[J]. Materials, 2018, 11(12): 2380.

[102] Cong J, Yang J J, Zhao B, et al. Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams[J]. Optics Express, 2015, 23(4): 5357-5367.

[103] Qin W W, Yang J J. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses[J]. Surface Science, 2017, 661: 28-33.

赵波, 郑昕, 邹婷婷, 谢洪波, 辛巍, 杨建军, 郭春雷. 表面亚波长周期结构的飞秒激光调控制备[J]. 激光与光电子学进展, 2020, 57(11): 111404. Bo Zhao, Xin Zheng, Tingting Zou, Hongbo Xie, Wei Xin, Jianjun Yang, Chunlei Guo. Control of Subwavelength Periodic Surface Structure Formation with Femtosecond Laser Pulses[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111404.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!