作者单位
摘要
季华实验室光电科学与技术研究部,广东 佛山 528200
针对角谱法在远距离衍射计算时的失真问题,分析其原因为有效频谱成分减少和频谱混叠造成的计算误差。结合带限角谱法的频域采样特性,对缩放角谱法进行了改进,并应用于大尺寸方形长焦透镜、圆形轴锥透镜和平顶光束衍射光学元件的衍射场分布计算。结果表明,相较于原始的带限角谱法和缩放角谱法,改进算法获得的衍射场分辨率更高且不存在边缘失真现象,在大尺寸口径、长距离、小衍射场精确计算方面具有重要的应用潜力。
衍射 角谱法 失真 带限角谱法 缩放角谱法 
激光与光电子学进展
2023, 60(23): 2307001
作者单位
摘要
季华实验室光电科学与技术研究部,广东 佛山 528200
衍射光学元件(DOE)对入射光束的波长、束宽、光束质量等参数都有很高的要求,其中光束质量的影响无法直接通过相干光场的衍射积分得出。本文利用高斯谢尔模型(GSM)光束分析了光束质量对平顶衍射光学元件输出的影响。采用对称迭代傅里叶变换算法设计了输出平顶光斑的DOE。用模式分解的方法研究了不同光束质量的光束经该DOE后的输出光斑,发现光束质量因子增加会使输出光斑平顶区尺寸减小,导致DOE失效。从交叉谱密度出发,表明DOE的输出光斑是相干部分和非相干部分的卷积,其中非相干部分是导致输出光斑劣化的原因。给出了平顶衍射光学元件适用的最大M2因子与输入和输出光束尺寸之间的关系。给出了一种GSM光束整形DOE的设计方法,该方法有助于在低光束质量激光器中实现DOE的应用。
衍射与光栅 衍射光学元件 光束质量 高斯谢尔模型 模式分解 
光学学报
2023, 43(14): 1405001
作者单位
摘要
季华实验室光电科学与技术研究部,广东 佛山 528200
应用于激光剥离、激光退火、激光转移等领域的大功率纳秒紫外激光器的输出激光通常是强度分布不均匀的部分相干光,为满足精密加工的高均匀度要求,开展了基于成像型微透镜阵列的紫外激光匀化技术研究。利用伪模分解理论和角谱衍射传输算法,建立了快速计算部分相干光通过微透镜阵列匀化系统的数值模型,并以准分子激光为仿真光源,通过对离焦量、阵列间距等参数的分析,确定了最佳设计参数,实现了边缘锐利的高均匀度方形光束输出。此外,详细讨论了微透镜阵列失调对光束形貌和均匀度的影响,并通过实验说明了理论设计的可靠性和参数影响分析的准确性。
激光光学 紫外激光 部分相干光 激光匀化 微透镜阵列 失调 
光学学报
2023, 43(10): 1014005
作者单位
摘要
季华实验室,广东 佛山 528200
利用衍射光学元件(DOE)对紫外激光进行相位调制,可在远场衍射获得微米级均匀光斑。该方法的优点为:可灵活设计均匀光斑的形状、尺寸;具有较高的能量损伤阈值,适用于高功率光源。DOE设计的难点在于制备微米级均匀光斑的同时,兼顾陡度、均匀度等参数指标。基于解析法设计DOE生成的均匀光斑过渡区陡度变化缓慢,可有效利用的均匀区域较小,不适合制备小尺寸均匀光斑。此外,基础Gerchberg-Saxton(GS)算法制备微米级平顶光束,整形效果不明显,均匀度无法满足应用要求。将基础GS算法收敛结果作为改进GS算法的初始相位,改进GS算法在频域设置信号区和噪声区,并限制频域振幅分布,在理论上具备可行性。分析了离焦误差影响,并进行了实验验证,发现实验结果与理论结果具有一致性。
激光光学 DOE设计 修正GS算法 平顶光束整形 激光加工 
光学学报
2023, 43(7): 0714004
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 长治学院电子信息与物理系, 山西 长治 046011
飞秒激光在材料表面诱导产生亚波长周期结构不仅可以改变材料表面的物化性质,而且具有无掩模制作和一步成型等优点,在多个领域具有广阔的应用前景。然而,目前结构形成存在排列规整性差、形状单一、制备效率低等问题。为此,综述了单束飞秒激光在金属表面高效制备规整性一维亚波长周期结构的研究进展,提出了利用时间延迟多束飞秒激光对金属和半导体表面一维亚波长周期结构产生特征(包括规整性、空间周期、排列方向等)进行灵活调控的新方法,成功实现了形貌特征分别为圆包、三角形、菱形、椭圆状、条纹-纳米颗粒复合等多种二维亚波长周期结构的制备,发现了表面结构调控产生过程中出现的超快物理新现象,阐明了时间延迟飞秒激光束与材料作用过程之间的瞬态关联作用。
激光光学 飞秒激光 表面周期结构 时间延迟 金属 半导体 超快动力学 
激光与光电子学进展
2020, 57(11): 111404

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!