光学学报, 2024, 44 (5): 0504001, 网络出版: 2024-03-19   

无电荷层InGaAs/Si雪崩光电探测器的优化设计

Optimal Design of Charge-Free Layer InGaAs/Si Avalanche Photodetector
作者单位
闽南师范大学物理与信息工程学院光场调控及其系统集成应用福建省高校重点实验室,福建 漳州 363000
摘要
目前,在近红外波段中普遍采用InGaAs/InP雪崩光电二极管(APD),但这类APD存在增益带宽积小和等效噪声高等问题,而InGaAs/Si APD采用电子、空穴离化系数极低的Si材料作为倍增层,在一定程度解决了上述问题,但其制造过程涉及Si电荷层的离子注入和高温退火激活,该过程工艺复杂、杂质分布不均匀、成本高。因此,本研究采用刻蚀技术在Si倍增层内制备凹槽环,并在凹槽环内填充不同介质对InGaAs层及Si层内的电场进行调控,构建无电荷层InGaAs/Si APD器件模型。结果表明,在凹槽环内填充空气或SiO2可获得高性能的InGaAs/Si APD。该研究结果可为后续研制工艺简单、性能稳定、低噪声的InGaAs/Si APD提供理论指导。
Abstract
Objective

InGaAs/Si avalanche photodiode (APD) employs Si materials with extremely low electron hole ionization coefficients as the multiplication layer, which to some extent solves the problem of high equivalent noise. However, its manufacturing involves ion implantation of Si charge layer and high-temperature annealing activation, which features a complex process, uneven impurities distribution, and high cost. We propose the utilization of etching technology to prepare groove rings in the Si multiplication layer and fill different media in the groove rings to modulate the electric field in the InGaAs layer and Si layer, thus building a charge-free layer InGaAs/Si APD device model. The results indicate that filling the groove ring with air or SiO2 can achieve high-performance InGaAs/Si APD. Finally, theoretical guidance can be provided for the subsequent development of InGaAs/Si APD with simple processes, stable performance, and low noise.

Methods

We propose to adopt etching technology to prepare a groove ring within the Si multiplication layer and fill different media inside the groove ring to modulate the electric field in the InGaAs layer and Si layer, which helps build a charge-free layer InGaAs/Si APD device model. Firstly, the changes in APD optical and dark current with different media are simulated. The changes in recombination rate and carrier concentration are simulated to explore the reasons for the changes in optical current. Secondly, the energy band changes of the APD are simulated to further understand the reasons for electron concentration changes. Thirdly, the changes of charge concentration, impact ionization rate, electric field, and other parameters with different media are simulated. Finally, the gain, bandwidth, and gain-bandwidth product of APD are simulated, and a comparison of different media shows that filling with the air can yield the best device performance.

Results and Discussions

The overall trend of optical current and dark current decreases with the increasing dielectric constant of the medium (Fig. 2). As the dielectric constant of the medium rises, the recombination rate decreases in the InGaAs absorption layer, Si multiplication layer, and Si substrate, consistent with the trend of optical current variation (Fig. 3). The conduction band of APD has no band order at the bonding interface, while the valence band at the interface has obvious band orders, making it difficult for carriers to transport at the interface and a large number of holes to accumulate at the interface (Fig. 5). The ionization coefficients of electrons and holes in the absorption layer slowly increase, while the ionization coefficients of electrons and holes in the multiplication layer further decrease, which is consistent with the trend of electric field changes (Fig. 7). As the dielectric constant increases, the electric field strength in the multiplication region gradually reduces, which weakens the carrier impact ionization effect and decreases the gain (Fig. 8). When the bias voltage is 35 V, the gain-bandwidth product basically shows a downward trend with the increasing dielectric constant of the medium. Additionally, when the medium inside the groove ring is air and the reverse bias voltage is equal to the avalanche voltage (35.2 V), the gain-bandwidth product reaches 100 GHz (Fig. 11).

Conclusions

We investigate the effect of filling different media in the Si multiplication layer groove ring on the charge-free layer InGaAs/Si APD. The results show that as the dielectric constant of different media increases, both optical current and dark current present a decreasing trend under the same bias voltage. The InGaAs/Si APD with air or SiO2 as the dielectric materials finally overlaps with the optical current and dark current after reaching the avalanche voltage, exhibiting the best current characteristics. As the dielectric constant of the medium rises, the gain-bandwidth product shows a downward trend under the same bias voltage. After the device avalanche, the gain-bandwidth product exhibits a trend of first increasing and then decreasing. When the medium inside the groove ring is air and the reverse bias voltage is 35.2 V, the gain-bandwidth product reaches 100 GHz. In summary, replacing the charge layer with a groove ring to construct a charge-free layer InGaAs/Si APD does not require ion implantation, and the process is simple. Meanwhile, filling the groove ring with air can yield the best device performance, and this new configuration provides a new idea for designing high-performance InGaAs/Si APD with simple processes.

1 引言

雪崩光电二极管(APD)是一种常见的半导体光电探测器件,它利用载流子碰撞雪崩倍增效应放大光电信号,实现对极微弱光信号的探测1。与传统光电探测器相比,APD具有功耗低、体积小、工作频谱范围宽和工作电压低等优势,被广泛运用于激光雷达2-4、量子通信5-8、生物发光及深空探测等领域9-11。近些年,一些新型探测器(如有机光电探测器、二维材料探测器)得到了迅速发展,其中,有机光电探测器具有制备简单、可调性好、轻量化、柔性、生物相容性等优点,因此在柔性电子学、可穿戴设备和环境探测等应用方面具有极大的发展潜力12-13。目前,以Si、Ge、GaN、InGaAs为代表的无机半导体光电探测器仍占主导地位,故本文主要研究无机光电探测器。

近年来,关于Ⅲ-Ⅴ族半导体APD的研究已经取得了较大进展,例如InGaAs/InP、InGaAs/InAlAs APD等已经被广泛应用于近红外波段光子信号的探测。由于InGaAs为直接带隙半导体材料,其带隙为0.74 eV,在近红外波段具有极高的吸收系数,吸收峰值出现在1.65 μm左右,故常被用作近红外APD的吸收层材料。InGaAs材料与雪崩倍增材料InP的晶格匹配较好14,因此采用外延技术可以在InP上直接生长出高质量的InGaAs薄膜15-17,从而构建吸收-渐变-电荷-倍增分离结构的InGaAs/InP APD18-21,以抑制吸收层中的隧穿,降低暗电流。InGaAs/InP APD的应用波段是900~1700 nm,且在1550 nm通信窗口具有较大的优势,并且具有工作温度低、体积小、稳定性高等优点。外延的InP倍增材料存在高密度、深能级的缺陷22-24,且其电子与空穴的离化系数之比(k值)高达0.3~0.5,导致InGaAs/InP APD有较大的等效噪声,难以进一步提升器件性能。

提升InGaAs/InP APD性能的最直接方法是使用比InP的k值更小的材料作为倍增层,从而降低器件的等效噪声并提高器件的增益带宽积。Si是一种间接带隙半导体材料,其k值小,对雪崩击穿的温度依赖性非常低,但是其禁带宽度(1.12 eV)不适用于近红外波段的吸收探测,因此需要结合其他半导体材料如Ge、InGaAs等制备APD25。以Si为倍增区的器件等效噪声较小,故InGaAs/Si APD成为近红外探测的理想选择之一。InGaAs和Si的晶格失配度26-28高达7.7%,导致器件暗电流较大,雪崩倍增受到限制,增益带宽积难以进一步提高,因此采用外延技术难以获得低穿透位错密度的InGaAs/Si界面。采用低温键合技术29-32可以有效降低InGaAs和Si间失配晶格对器件性能的影响,获得更大的增益带宽积、更低的噪声和更好的温度特性,但是InGaAs/Si APD中用于调制电场的电荷层的制备涉及离子注入和高温退火激活33-36,工艺繁琐、杂质分布不均匀、成本高。

本文提出一种无电荷层InGaAs/Si APD器件结构,即利用刻蚀技术在Si倍增层内制备凹槽环并填充不同的介质,以调制 InGaAs层与Si层的内部电场,使得InGaAs处于低电场状态,而Si倍增层处于高电场状态。重点仿真分析了APD键合界面凹槽环内不同介质对APD暗电流、光电流、载流子复合率、载流子浓度、碰撞电离率、增益、3 dB带宽、载流子速率以及增益带宽积等的影响。

2 结构模型与模拟软件

图1为无电荷层InGaAs/Si APD的三维结构图。可以看到,表面接触层是厚度为0.1 μm的p型重掺杂(掺杂浓度为1×1019 cm-3)InGaAs和厚度为1 μm的n型重掺杂(掺杂浓度为1×1019 cm-3)Si衬底,用于形成欧姆接触。第二部分由厚度为1 μm的本征(掺杂浓度为5×1015 cm-3)InGaAs吸收层与厚度为0.08 μm的8个本征(掺杂浓度为5×1015 cm-3)In1-xGaxAs渐变层(x由0.5渐变到0.85)组成;InGaAs吸收层可以吸收1550 nm的近红外光;InGaAs渐变层可以将导带填平,尽可能减小带阶,避免InGaAs与Si之间存在较大的带阶,使得载流子难以传输。键合界面由厚度为0.5 μm的i型本征(掺杂浓度为5×1015 cm-3)Si和凹槽环组成;取代传统InGaAs/Si APD电荷层的凹槽环能为倍增层提供足够大的电场强度,促使载流子与晶格发生碰撞电离,生成更多新的电子-空穴对,产生连续的雪崩增益。器件表面涂覆一层SiO2钝化层,在凹槽环内填充不同的介质材料来构成不同性能的APD。凹槽环内填充的介质材料名称及其介电常数如表1所示。

图 1. 无电荷层InGaAs/Si APD的三维结构图

Fig. 1. 3D structural diagram of charge-free layer InGaAs/Si APD

下载图片 查看所有图片

表 1. 凹槽环填充材料参数

Table 1. Parameters of groove ring filling materials

Serial numberMaterialDielectric constant
1Air1.0
2SiO23.9
3Si3N47.5
4Al2O39.3
5HfO222.0
6Ta2O526.0

查看所有表

InGaAs/Si APD涉及载流子的输运,因此需要引入泊松方程[式(1)]、电流连续方程[式(2)~(5)]以及依赖于平行电场的载流子迁移模型[式(6)、(7)],而APD涉及载流子的产生与复合,因此需要引入的复合模型有俄歇复合模型[式(8)]、由浓度决定的SRH复合模型[式(9)]、光学辐射复合模型[式(10)]、缺陷辅助俄歇复合模型[式(11)、(12)]。APD需要工作在高电场下,此时电场会发生倾斜,导致载流子容易从价带隧穿到导带或从导带隧穿到价带,因此需要引入标准能带跃迁模型[式(13)]和Trap-Assisted跃迁模型[式(14)],以更好地描述载流子在能带之间的跃迁。APD在高电场下的势垒可能会降低,因此需要使用库仑势阱Poole-Frenkel势垒降低模型[式(15)、(16)]对InGaAs/Si APD器件性能进行理论计算。

泊松方程表示为

divεψ=-ρ

式中:ε表示介电常数;ψ表示静电势能;ρ表示电荷的体密度。

电流连续方程表示为

nt=1qdiv Jn+Gn-Rnpt=1qdiv Jp+Gp-RpJn=-qμnnΦnJp=-qμppΦp

式中:JnJp表示电子和空穴的电流密度;GnGp表示电子和空穴的产生速率;RnRp表示电子和空穴的复合率;qμnμp分别表示单位电子电荷量、电子的迁移率和空穴的迁移率;n表示电子浓度;p表示空穴浓度;Φn表示n型半导体的准费米能级;Φp表示p型半导体的准费米能级。

依赖于平行电场的载流子迁移模型表示为

μnE=μn01/1+μn0EνnaBETAN1aBETANμpE=μp01/1+μp0EνpaBETAP1aBETAP

式中:μnEμpE表示平行电场中电子迁移率和空穴迁移率;E表示电场大小;μn0μp0分别表示低电场电子迁移率和空穴迁移率;νnνp为电子和空穴饱和速率;aBETANaBETAP为设置参数。

俄歇复合模型表示为

RΑuger=Anpn2-nnie2+Apnp2-pnie2

式中:AnAp分别为电子和空穴的俄歇系数;nie为本征载流子浓度;pn分别为空穴浓度和电子浓度。

由浓度决定的SRH复合模型表示为

RSRH=pn-nie2τp0n+nieexpETRAPkTL+τn0p+nieexp-ETRAPkTL

式中:τp0τn0分别为空穴寿命和电子寿命;TL为开尔文晶格温度;ETRAP表示陷阱能级和本征费米能级之间的差值。

光学辐射复合模型表示为

RnpOPT=CcOPTnp-nie2

式中:CcOPT为捕获率。

缺陷辅助俄歇复合模型表示为

τn=τn1+αTAA.CNn0+p0τnτp=τp1+αTAA.CPn0+p0τp

式中:τnτp为电子寿命和空穴寿命;n0为电子密度;p0为空穴密度;αTAA.CNαTAA.CP默认值为1.0×10-12 cm3/s。

标准能带跃迁模型表示为

GBBT=DξBB.AEξBB.GAMMAexp-ξBB.BE

式中:GBBT为遂穿率;D表示统计因子;ξBB.A=9.6615×1018 cm-1·V-2·s-1ξBB.B=3.0×107 V/cm;ξBB.GAMMA=2.0。

Trap-Assisted跃迁模型表示为

RSRH=pn-nie2τp01+ΓpDIRACn+nieexpETRAPkTL+τn01+ΓnDIRACp+nieexp-ETRAPkTL

式中:ΓpDIRAC表示狄拉克井的空穴场效应增强项;ΓnDIRAC表示狄拉克井的电子场效应增强项。

库仑势阱Poole-Frenkel势垒降低模型表示为

Rn,SRH=pn-nie2τp01+ΓnDIRACn+nieexpETRAPkTL+τn0χF+ΓnCOULp+nieexp-ETRAPkTLRp,SRH=pn-nie2τp0χF+ΓnCOULn+nieexpETRAPkTL+τn01+ΓpDIRACp+nieexp-ETRAPkTL

式中:χF表示Poole-Frenkel热辐射增强因子;ΓnCOUL表示库仑场增强项。

3 结果与讨论

首先,模拟了InGaAs/Si APD电流随键合界面凹槽环内不同介质的变化,结果如图2(a)所示。可以看到,随着介质介电常数的增加,光电流、暗电流在偏压小于-25 V时变化不大,但在雪崩后,光电流、暗电流大致呈下降趋势。图2(b)所示为在95%雪崩电压(Vb)下,凹槽环内不同介质的光电流、暗电流的变化趋势。可以看到,光电流、暗电流随介质介电常数的增加整体呈下降趋势。以电流突增位置对应的反向偏压值为雪崩电压,凹槽环内介质对APD雪崩电压的影响如图2(c)所示。可以看到,随着介质介电常数的增加,雪崩电压呈先上升后下降的趋势,贯穿电压与雪崩电压的间隙变小,导致APD的工作范围减小,且凹槽环内介质为SiO2的APD雪崩电压最大。

图 2. 凹槽环内不同介质对无电荷层InGaAs/Si APD的影响。(a)电流;(b)95%Vb下的电流;(c)雪崩电压

Fig. 2. Effect of different dielectric materials in the grooved ring on the charge-free layer InGaAs/Si APD. (a) Current; (b) current at 95%Vb; (c) avalanche voltage

下载图片 查看所有图片

为探究电流变化的原因,模拟了无电荷层InGaAs/Si APD复合率随键合界面凹槽环内不同介质的变化,结果如图3所示。从图3(a)的结构切面可以看到,APD载流子的复合主要发生在Si倍增层和重掺杂的Si衬底。随着介质的介电常数增加,复合率在InGaAs吸收层、Si倍增层和Si衬底均呈下降趋势,与光电流的变化趋势一致。图3(b)所示为在X=16.229处沿纵向截取结构切面图得到的复合率曲线。可以看到,随着介质介电常数的增加,复合率在InGaAs吸收层呈小幅度下降的趋势,在Si倍增层和Si衬底均呈较大幅度下降的趋势,这与结构切面图的整体变化趋势吻合。

图 3. 无电荷层InGaAs/Si APD复合率随介质的变化。(a)复合率结构切面图;(b)在X=16.229处截取的复合率曲线

Fig. 3. Changes of recombination rate of charge-free layer InGaAs/Si APD with media. (a) Section diagram of recombination rate structure; (b) recombination rate curves taken at X=16.229

下载图片 查看所有图片

其次,模拟了APD中载流子浓度随键合界面凹槽环内不同介质的变化,结果如图4所示。可以看到,随着介质介电常数的增加,InGaAs吸收层的电子浓度呈缓慢上升趋势,空穴浓度呈加速下降趋势(较电子浓度下降的幅度大两个数量级),空穴浓度与复合率变化趋势一致,因此吸收层空穴浓度的变化是吸收层复合率变化的主要原因。Si倍增层的电子浓度呈小幅上升趋势,空穴浓度呈加速下降的趋势(较电子浓度下降的幅度明显),导致该层复合率出现较大幅度下降。对电子和空穴结构切面图在X=16.229处沿纵向截取,得到的电子浓度和空穴浓度如图4(c)、(d)所示。可以看到,随着介质介电常数的增加,InGaAs/Si键合界面处的电子浓度先上升后下降,空穴浓度呈下降趋势,二者共同作用导致键合层内复合率呈上升趋势。

图 4. 无电荷层 InGaAs/Si APD电子浓度和空穴浓度随介质的变化。(a)结构切面的电子浓度;(b)结构切面的空穴浓度;(c)在X=16.229处的电子浓度;(d)在X=16.229处的空穴浓度

Fig. 4. Changes of electron and hole concentrations of charge-free layer InGaAs/Si APD with media. (a) Electron concentration in structural section; (b) hole concentration in structural section; (c) electron concentration at X=16.229; (d) hole concentration at X=16.229

下载图片 查看所有图片

再次,模拟了InGaAs/Si APD在结构切面X=16.229处的能带随键合界面凹槽环内介质的变化,结果如图5所示。对比图5(a)、(b)可以看出,APD在键合界面处导带无带阶,而界面处的价带存在明显带阶,导致载流子在界面处难以运输,而空穴在界面处大量堆积。同时,还模拟了电荷浓度随键合界面凹槽环内介质的变化,结果如图5(c)所示。可以看到,电荷浓度在键合界面处急剧升高,表明载流子在带阶作用下发生了严重堆积。随着键合界面凹槽环内介质介电常数的增加,InGaAs层内导带逐渐平缓,且当介电常数较大时,导带在键合界面处发生向下弯曲,并逐渐在键合界面处形成一个势垒来阻碍载流子的输运,导致InGaAs层内电子难以输运到倍增层。随着介电常数的增加,价带逐渐变得平缓,介电常数较高时,价带在键合界面处逐渐弯曲上翘,阻碍空穴迁移。

图 5. 凹槽环内不同介质对无电荷层InGaAs/Si APD的影响。(a)键合界面导带;(b)键合界面价带;(c)电荷浓度

Fig. 5. Effect of different dielectric materials in the grooved ring on the charge-free layer InGaAs/Si APD. (a) Conduction band of bonding interface; (b) valence band of bonding interface; (c) charge concentration

下载图片 查看所有图片

然后,模拟了APD中碰撞电离率随键合界面凹槽环内介质的变化,结果如图6所示。众所周知,碰撞电离率与载流子浓度息息相关,倍增层触发雪崩的电子主要来自吸收层。从图6可看出,随着介质介电常数的增加,InGaAs吸收层的碰撞电离率急剧增大,导致吸收层以及倍增层电子浓度小幅上升。在Si倍增层碰撞电离率缓慢减小,导致Si倍增层以及InGaAs吸收层空穴浓度大幅下降。图6(b)所示为对图6(a)在X=16.229处沿纵向截取得到的碰撞电离率曲线,该曲线的变化规律与结构截面图基本一致。

图 6. 凹槽环内不同介质对无电荷层InGaAs/Si APD的影响。(a)结构切面的碰撞电离率(RIIR);(b)在X=16.229处的碰撞电离率;(c)在X=16.229处的电子离化系数;(d)在X=16.229处的空穴离化系数

Fig. 6. Effect of different dielectric materials in the grooved ring on the charge-free layer InGaAs/Si APD. (a) Impact ionization rate (RIIR) of structural section; (b) impact ionization rate at X=16.229; (c) electron ionization coefficient at X=16.229; (d) hole ionization coefficient at X=16.229

下载图片 查看所有图片

载流子的碰撞电离系数为单位距离内载流子发生碰撞电离的次数,可以用来表征碰撞电离的难易程度,与电场强度有关。本实验模拟了电子和空穴的离化系数随键合界面凹槽环内不同介质的变化,结果如图6(c)、(d)所示。在X=16.229处沿纵向截取得到电子和空穴的离化系数曲线,可以看出,吸收层的电子和空穴离化系数缓慢增大,而倍增层的电子和空穴离化系数迅速减小,该趋势与电场的变化趋势一致,如图7(b)所示。图7(a)为电场结构切面图,对比图7(a)、(b)可以看出,随着介质介电常数的增加,电场曲线变化趋势与电场结构切面图相符。当填充材料分别为空气、SiO2、Si3N4、Al2O3时,InGaAs吸收层的电场远小于Si倍增层的电场,具有较好的雪崩效应。

图 7. 无电荷层InGaAs/Si APD电场随介质的变化。(a)结构切面的电场;(b)在X=16.229处的电场

Fig. 7. Variation of electric field in the charge-free layer InGaAs/Si APD with media. (a) Electric field of structural section; (b) electric field at X=16.229

下载图片 查看所有图片

最后,提取了APD的增益随键合界面凹槽环内介质的变化,结果如图8所示。图8(a)所示为不同偏压下增益的整体变化,增益随着反向偏压的增加呈现由平缓转向急剧上升的趋势。图8(b)所示为95%雪崩电压下增益随凹槽环内介质的介电常数增加的趋势,随着介质介电常数增加,增益整体呈现减小趋势,主要是因为随着介质介电常数的增加,倍增区电场强度逐渐下降,导致载流子碰撞电离效应减弱,进而导致增益下降。

图 8. 无电荷层InGaAs/Si APD增益随介质的变化。(a)增益曲线;(b)95%Vb下的增益

Fig. 8. Variation of InGaAs/Si APD gain with media. (a) Gain curves; (b) gain at 95%Vb

下载图片 查看所有图片

带宽是表征APD性能的重要参数之一,图9所示为键合界面凹槽环内不同介质对APD 3 dB带宽的影响。随着介质介电常数的增加,在相同偏压下,3 dB带宽整体呈现上升趋势。

图 9. 无电荷层InGaAs/Si APD 3 dB带宽曲线

Fig. 9. 3 dB bandwidth curves of InGaAs/Si APD without charge layer

下载图片 查看所有图片

为了探索带宽变化的原因,模拟了载流子速率随键合界面凹槽环内介质的变化,结果如图10所示。随着介质介电常数的增加,InGaAs吸收层电子速率呈下降趋势,空穴速率呈先上升后下降的趋势,Si倍增层的电子速率和空穴速率呈下降趋势。随着介质介电常数的增加,碰撞电离率呈上升趋势,导致载流子速率下降。载流子速率的这一变化趋势造成了载流子渡越时间减小,带宽增大;增益的下降也间接导致雪崩建立时间缩短,从而导致3 dB带宽增大。随着介质介电常数的增加,倍增层内电场呈下降趋势,从而导致倍增层的电子和空穴速率下降,进而影响带宽的变化。

图 10. X=16.229处的无电荷层InGaAs/Si APD电子速率和空穴速率随介质的变化。(a)电子速率;(b)空穴速率

Fig. 10. Variation of electron and hole rates in the charge-free layer InGaAs/Si APD at X=16.229 with media. (a) Electron rate; (b) hole rate

下载图片 查看所有图片

此外,还模拟了键合界面凹槽环内不同介质对无电荷层InGaAs/Si APD增益带宽积的影响,结果如图11所示。当偏压为35 V时,随着介质介电常数的增加,增益带宽积基本呈下降趋势;随着偏压增大,增益带宽积基本呈增加趋势。且当凹槽环内介质为空气,反向偏压等于雪崩电压(35.2 V)时,增益带宽积达到100 GHz。与目前报道的APD相比,该增益带宽积处于中等水平。综上所述,所提出的无电荷层APD结构通过凹槽环实现电场调控,器件暗电流可以达到极低水平,带宽也可以达到10 GHz以上。遗憾的是,该结构的增益水平欠佳,导致增益带宽积不理想。

图 11. 无电荷层InGaAs/Si APD 增益带宽积

Fig. 11. Gain-bandwidth product of charge-free layer InGaAs/Si APD

下载图片 查看所有图片

4 结论

分析Si倍增层凹槽环内填充的介质对无电荷层InGaAs/Si APD的影响。研究表明,随着不同介质介电常数的增加,在同一偏压下,光电流和暗电流均呈下降趋势。其中介质材料为空气或SiO2的InGaAs/Si APD在达到雪崩电压后,光电流和暗电流最终重合,具有最优良的电流特性。随着介质介电常数的增加,在同一偏压下,增益带宽积基本呈下降趋势;器件雪崩后,增益带宽积呈现先增加后减小的趋势;当凹槽环内介质为空气且反向偏压为35.2 V时,增益带宽积达到100 GHz。综上,采用凹槽环替代电荷层,构造无电荷层InGaAs/Si APD,不需要注入离子,工艺简单,同时在凹槽环内填充空气可获得最佳的器件性能,这一新构型为设计工艺简单的高性能InGaAs/Si APD提供了新思路。

参考文献

[1] Kim H, Jung Y, Doh I J, et al. Smartphone-based low light detection for bioluminescence application[J]. Science Letter, 2017, 7: 40203.

[2] Li C, Wu K, Cao X Y, et al. Monolithic coherent LABS lidar based on an integrated transceiver array[J]. Optics Letters, 2022, 47(11): 2907-2910.

[3] Li Z H, Bao Z Y, Shi Y F, et al. Photon-counting chirped amplitude modulation lidar with 1.5-GHz gated InGaAs/InP APD[J]. IEEE Photonics Technology Letters, 2015, 27(6): 616-619.

[4] Li Z J, Lai J C, Wu Z X, et al. Dead-time-based sequence coding method for single-photon lidar ranging[J]. Optics Communications, 2022, 517: 128260.

[5] Koehler-Sidki A, Dynes J F, Lucamarini M, et al. Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution[J]. Physical Review Applied, 2018, 9(4): 044027.

[6] Piveteau A, Pauwels J, Håkansson E, et al. Entanglement-assisted quantum communication with simple measurements[J]. Nature Communications, 2022, 13: 7878.

[7] Couteau C, Barz S, Durt T, et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 2023, 5: 326-338.

[8] Brambila E, Gómez R, Fazili R, et al. Ultrabright polarization-entangled photon pair source for frequency-multiplexed quantum communication in free-space[J]. Optics Express, 2023, 31(10): 16107-16117.

[9] Gao H T, Muralidharan S, Karim M R, et al. Neutron irradiation and forming gas anneal impact on β-Ga2O3 deep level defects[J]. Journal of Physics D, 2020, 53(46): 465102.

[10] Love A C, Caldwell D R, Kolbaba-Kartchner B, et al. Red-shifted coumarin luciferins for improved bioluminescence imaging[J]. Journal of the American Chemical Society, 2023, 145(6): 3335-3345.

[11] 万超, 郝浩, 赵清源, 等. 单光子探测在无线光通信收发技术中的应用[J]. 激光与光电子学进展, 2022, 59(5): 0500001.

    Wan C, Hao H, Zhao Q Y, et al. Application of single photon detection in wireless optical communication transceiver technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001.

[12] Lv T R, Zhang W H, Yang Y Q, et al. Micro/nano-fabrication of flexible poly (3, 4-ethylenedioxythiophene)-based conductive films for high-performance microdevices[J]. Small, 2023, 19(30): 2301071.

[13] 柯宇轩, 岑颖乾, 綦殿禹, 等. 基于二维材料的光通信波段光电探测器[J]. 中国激光, 2023, 50(1): 0113008.

    Ke Y X, Cen Y Q, Qi D Y, et al. Two-dimensional materials photodetectors for optical communications[J]. Chinese Journal of Lasers, 2023, 50(1): 0113008.

[14] Bai X, Li Y F, Fang X W, et al. Innovative strategy to optimize the temperature-dependent lattice misfit and coherency of iridium-based γ/γ′ interfaces[J]. Applied Surface Science, 2023, 609: 155369.

[15] Fan Y B, Shi T T, Ji W J, et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes[J]. Optics Express, 2023, 31(5): 7515-7522.

[16] Tian Y, Lin Z B, Zhao Y L. The excess noise characteristics of InGaAs/InP APD in consideration of nonlinearity effect[J]. Proceedings of SPIE, 2022, 12154: 121540T.

[17] Li X Z, Zhang J Y, Yue C, et al. High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure[J]. Scientific Reports, 2022, 12: 7681.

[18] Wu W, Shan X, Long Y Q, et al. Free-running single-photon detection via GHz gated InGaAs/InP APD for high time resolution and count rate up to 500 mcount/s[J]. Micromachines, 2023, 14(2): 437.

[19] He T T, Yang X H, Tang Y S, et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. Journal of Semiconductors, 2022, 43(10): 102301.

[20] Karnik T S, Dao K P, Du Q Y, et al. High-efficiency mid-infrared InGaAs/InP arrayed waveguide gratings[J]. Optics Express, 2023, 31(3): 5056-5068.

[21] Braga O M, Delfino C A, Kawabata R M S, et al. Investigation of InGaAs/InP photodiode surface passivation using epitaxial regrowth of InP via photoluminescence and photocurrent[J]. Materials Science in Semiconductor Processing, 2023, 154: 107200.

[22] Zhu X, Zhang Y W, Zhang S N, et al. Defect energy levels in monoclinic β-Ga2O3[J]. Journal of Luminescence, 2022, 246: 118801.

[23] Lian W T, Jiang C H, Yin Y W, et al. Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics[J]. Nature Communications, 2021, 12: 3260.

[24] Zhou X Q, Ning L X, Qiao J W, et al. Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors[J]. Nature Communications, 2022, 13: 7589.

[25] 仵欣杰, 叶海福, 艾杰, 等. 硅光电倍增管在辐射探测领域中的应用进展[J]. 激光与光电子学进展, 2022, 59(21): 2100004.

    Wu X J, Ye H F, Ai J, et al. Application progress of silicon photomultiplier in radiation detection[J]. Laser & Optoelectronics Progress, 2022, 59(21): 2100004.

[26] Yun J, Bae M S, Baek J S, et al. Modeling of optimized lattice mismatch by carbon-dioxide laser annealing on (In, Ga) Co-doped ZnO multi-deposition thin films introducing designed bottom layers[J]. Nanomaterials, 2022, 13(1): 45.

[27] Li S C, Liang H Y, Li C, et al. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution[J]. Journal of Materials Science & Technology, 2022, 106: 19-27.

[28] Tian Y, Feng P, Zhu C Q, et al. Nearly lattice-matched GaN distributed Bragg reflectors with enhanced performance[J]. Materials, 2022, 15(10): 3536.

[29] Ke S Y, Zhou J R, Huang D L, et al. Polycrystalline Ge intermediate layer for Ge/Si wafer bonding and defect elimination in Si (SOI)-based exfoliated Ge film[J]. Vacuum, 2020, 172: 109047.

[30] Ke S Y, Ye Y J, Lin S M, et al. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge[J]. Applied Physics Letters, 2018, 112(4): 041601.

[31] Ke S Y, Lin S M, Ye Y J, et al. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering[J]. Applied Surface Science, 2018, 434: 433-439.

[32] Huang Z W, Mao Y C, Lin G Y, et al. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors[J]. Optics Express, 2018, 26(5): 5827-5834.

[33] Liu C X, Lu Y, Ding W J, et al. One-dimensional and two-dimensional Er3+-doped germanate glass waveguides by combination of He+ ion implantation and precise diamond blade dicing[J]. Vacuum, 2023, 209: 111743.

[34] Harada S, Sakane H, Mii T, et al. Suppression of partial dislocation glide motion during contraction of stacking faults in SiC epitaxial layers by hydrogen ion implantation[J]. Applied Physics Express, 2023, 16(2): 021001.

[35] 鲍诗仪, 母浩龙, 周锦荣, 等. 不同晶态Ge薄膜键合层对InGaAs/Si雪崩光电二极管性能的影响研究[J]. 中国激光, 2023, 50(14): 1403001.

    Bao S Y, Mu H L, Zhou J R, et al. Effect of different crystalline Ge film bonding layers on properties of InGaAs/Si avalanche photodiodes[J]. Chinese Journal of Lasers, 2023, 50(14): 1403001.

[36] 周锦荣, 鲍诗仪, 佘实现, 等. 不同Ge组分a-Si1-xGex键合层对InGaAs/Si雪崩光电二极管性能的影响(英文)[J]. 光子学报, 2022, 51(9): 0951611.

    Zhou J R, Bao S Y, She S X, et al. Effect of a-Si1-xGex bonding layer with different Ge components on the performance of InGaAs/Si avalanche photodiode[J]. Acta Photonica Sinica, 2022, 51(9): 0951611.

张娟, 姚儿, 柯少颖. 无电荷层InGaAs/Si雪崩光电探测器的优化设计[J]. 光学学报, 2024, 44(5): 0504001. Juan Zhang, Er Yao, Shaoying Ke. Optimal Design of Charge-Free Layer InGaAs/Si Avalanche Photodetector[J]. Acta Optica Sinica, 2024, 44(5): 0504001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!