量子电子学报, 2022, 39 (4): 605, 网络出版: 2022-08-24  

二硫化钨薄膜双共振上转换荧光增强研究

Double resonance up-conversion fluorescence enhancement of tungsten disulfide films
作者单位
哈尔滨工业大学 (深圳) 理学院, 广东 深圳 518055
摘要
为探究二维层状过渡金属硫化物的激子效应, 尤其是上转换过程, 以层状 WS2 样品为例开展了研究。利用 532 nm 连续激光和显微拉曼技术, 探究了 WS2 晶体中 X0、X- 激子态物理起源和基本物理性质。利用 633 nm 连续激光, 实现了 WS2 晶体的单光子上转换荧光增强, 证实了其背后的双共振物理机制, 即入射光与 X- 激子态共振, 在光学 声子 A1g、E12g 的辅助下跃迁至高能级 X0 激子态, 最后自发辐射上转换荧光。此外, 进一步对双共振上转换荧光的影响因素进行了分析, 包括曝光时间、温度和激发功率。拟合结果表明适当增加曝光时间、减小环境温度和增加激发功率, WS2 的上转换荧光效率会得到提升。
Abstract
In order to explore the exciton effect of two-dimensional layered transition metal sulfide, especially the up-conversion fluorescence process, the layered WS2 sample was taken as an example to study. Using 532 nm continuous laser and micro-Raman technology, the physical origin and basic properties of X0 and X- exciton of WS2 crystal were investigated. The continuous laser of 633 nm was used to realize single photon up-conversion fluorescence enhancement, which confirmed the physical mechanism of double resonance, that is, the incident light resonates with the X- exciton state, then exciton transitions to the high-energy X0 exciton state with the aid of optical phonons A1g and E12g, and finally produces spontaneous up-conversion fluorescence. In addition, the influencing factors of X0 were further analyzed including exposure time, temperature and excitation power. The fitting results showed that the up-conversion fluorescence efficiency could be improved by appropriately increasing the exposure time, decreasing the ambient temperature and increasing the excitation power.
参考文献

[1] Raja A, Waldecker L, Zipfel J, et al. Dielectric disorder in two-dimensional materials [J]. Nature Nanotechnology, 2019, 14(9): 832-837.

[2] Tran K, Moody G, Wu F C, et al. Evidence for Moiré excitons in Van Der Waals heterostructures [J]. Nature, 2019, 567(7746): 71-75.

[3] Nagler P, Ballottin M V, Mitioglu A A, et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2 [J]. Physical Review Letters, 2018, 121(5): 057402.

[4] Duan X D, Wang C, Pan A L, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges [J]. Chemical Society Reviews, 2015, 44(24): 8859-8876.

[5] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216-226.

[6] Gu J, Chakraborty B, Khatoniar M, et al. A room temperature polariton light-emitting diode based on monolayer WS2 [J]. Nature Nanotechnology, 2019, 14(11): 1024-1028.

[7] Lee J Y, Shin J H, Lee G H, et al. Two-dimensional semiconductor optoelectronics based on Van Der Waals heterostructures [J]. Nanomaterials, 2016, 6(11): 193-200.

[8] Ponomarev E, Sohier T, Gibertini M, et al. Enhanced electron-phonon interaction in multi-valley materials [J]. Physical Review X, 2019, 9(3) 031019.

[9] Pei J J, Yang J, Yildirim T, et al. Many-body complexes in 2D semiconductors [J]. Advanced Materials, 2019, 31(2): 1706945.

[10] Jones A M, Yu H Y, Schaibley J R, et al. Excitonic luminescence up-conversion in a two-dimensional semiconductor [J]. Nature Physics, 2016, 12(4): 323-327 .

[11] Jadczak J, Bryja L, Kutrowska-Girzycka J, et al. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2 [J]. Nature Communications, 2019, 10(1): 477-482.

[12] Wang G, Glazov M M, Robert C, et al. Double resonant Raman scattering and valley coherence generation in monolayer WSe2 [J]. Physical Review Letters, 2015, 115(11): 117401.

[13] Sheik-Bahae M, Epstein R I. Can laser light cool semiconductors? [J]. Physical Review Letters, 2004, 92(24): 247403.

[14] Zhang J, Li D H, Chen R J, et al. Laser cooling of a semiconductor by 40 Kelvin [J]. Nature, 2013, 493(7433): 504-508.

[15] Jadczak J, Delgado A, Bryja L, et al. Robust high-temperature trion emission in monolayers of Mo (SySe1-y)2 alloys[J]. Physical Review B, 2017, 95(19): 195427.

[16] Van Tuan D, Jones A M, Yang M, et al. Virtual trions in the photoluminescence of monolayer transition-metal dichalcogenides [J]. Physical Review Letters, 2019, 122(21): 217401.

[17] Liu E F, Van Baren J, Liang C T, et al. Multipath optical recombination of intervalley dark excitons and trions in monolayer WSe2 [J]. Physical Review Letters, 2020, 124(19): 196802.

[18] Jadczak J, Kutrowska-Girzycha J, Kapuc1ński P, et al. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments [J]. Nanotechnology, 2017, 28(39): 395702.

[19] Ding W, Hu L, Liu Q C, et al. Structure modulation induced enhancement of microwave absorption in WS2 nanosheets [J]. Applied Physics Letters, 2018, 113(24): 243102.

[20] Li X L, Qiao X F, Han W P, et al. Determining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates [J]. Nanotechnology, 2016, 27(14): 145704.

[21] Tan P H, Han W P, Zhao W J, et al. The Shear mode of multilayer graphene [J]. Nature Materials, 2012, 11(4): 294-300.

[22] Benameur M M, Radisavljevic B, Héron J S, et al. Visibility of dichalcogenide nanolayers [J]. Nanotechnology, 2011, 22(12): 125706.

[23] Han W P. Thickness Identification and Raman Spectroscopy of Two-dimensional Ultrathin Layered Crystal Materials [D]. Beijing: University of Chinese Academy of Sciences, 2013.

[24] Arora A, Deilmann T, Reichenauer T, et al. Excited-state trions in monolayer WS2 [J]. Physical Review Letters, 2019, 123(16): 167401.

[25] Li Z P, Wang T M, Jin C H, et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2 [J]. Nature Communications, 2019, 10: 2469.

洪慧慧, 叶佐东. 二硫化钨薄膜双共振上转换荧光增强研究[J]. 量子电子学报, 2022, 39(4): 605. HONG Huihui, Cho-Tung Yip. Double resonance up-conversion fluorescence enhancement of tungsten disulfide films[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 605.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!