发光学报, 2019, 40 (12): 1546, 网络出版: 2020-01-09  

壳聚糖衍生物基聚合物碳点对Pd2+的传感性能

Sensing Properties of Chitosan Derivatives-based Polymer Carbon Dots to Pd2+
作者单位
南宁师范大学 化学与材料学院, 广西天然高分子化学与物理重点实验室, 广西 南宁 530001
摘要
以柠檬酸与壳聚糖为主要原料, 以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为偶合剂, 合成了一种壳聚糖衍生物(CS-g-CA)。然后将CS-g-CA与掺杂试剂N-(2-羟乙基)-乙二胺通过水热法合成了壳聚糖衍生物聚合物碳点(P(CS-g-CA)Ds)。采用荧光光谱、紫外光谱、透射电镜对P(CS-g-CA)Ds进行了表征和性能测试。结果表明该聚合物碳点具有良好的荧光性能, 有较高的量子产率(54.7%)和较长的荧光寿命(13.12 ns)。将P(CS-g-CA)Ds应用于金属离子检测中, 发现P(CS-g-CA)Ds对Pd2+有良好的选择性, 其检测极限为63.3 nmol/L。通过紫外吸收光谱、荧光寿命以及不同温度下猝灭常数的测定研究了Pd2+对P(CS-g-CA)Ds的荧光猝灭机制, 结果均表明其猝灭机制为静态猝灭。
Abstract
In this paper, a chitosan derivative(CS-g-CA) was synthesized by using citric acid and chitosan as main raw materials, N-hydroxysuccinimide(NHS) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride(EDC) as coupling agents. Then, the chitosan derivative polymer dot fluorescent material P(CS-g-CA) Ds was synthesized by hydrothermal method using CS-g-CA and the doping reagent N-(2-hydroxyethyl)-ethylenediamine. The P(CS-g-CA)Ds was characterized by fluorescence, ultraviolet spectroscopy(UV), transmission electron microscopy, photoluminescence spectra.The quantum yield and fluorescence lifetime of the test P(CS-g-CA)Ds were 54.7% and 13.12 ns, respectively, indicating that the polymer carbon dots have good fluorescence properties. When P(CS-g-CA)Ds was applied to metal ion detection, it was found that P(CS-g-CA)Ds had good selectivity to Pd2+ with a detection limit of 63.3 nmol/L. The fluorescence quenching mechanism of Pd2+ on P(CS-g-CA)Ds was studied by UV spectroscopy, fluorescence lifetime and quenching constant at different temperatures. The results show that the quenching mechanism is static quenching.
参考文献

[1] CHEN X Q,LI H D,JIN L Y,et al.. A ratiometric fluorescent probe for palladium detection based on an allyl carbonate group functionalized hemicyanine dye [J]. Tetrahedron Lett., 2010,55(15):2537-2540.

[2] SHARMA R K,PANDEY A,GULATI S,et al.. An optimized procedure for preconcentration,determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel [J]. J. Hazard. Mater., 2012,209-210:285-292.

[3] AWUAL R,HASAN M,ZN H. Organic-inorganic based nano-conjugate adsorbent for selective palladium(Ⅱ) detection,separation and recovery [J]. Chem. Eng. J., 2015,259:611-619.

[4] ZHAO Y Z,LI X M,SCHECHTER J M,et al.. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes [J]. RSC Adv., 2016,6(7):5384-5390.

[5] VELMURUGAN M,THIRUMALRAJ B,CHEN S M,et al.. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed un-modified carbon electrode [J]. J. Colloid Interface Sci., 2017,485:123-128.

[6] SHULTZ M D,LASSIG J P,GOOCH M G,et al.. Palladium—a new inhibitor of cellulase activities [J]. Biochem. Biophys. Res. Commun., 1995,209(3):1046-1052.

[7] MERGET R,ROSNER G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters [J]. Sci. Total Environ., 2001,270(1-3):165-173.

[8] GARRETT C E,PRASAD K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions [J]. Adv. Synth. Catal., 2004,346(8):889-900.

[9] JI Q M,HONMA I,PAEK S M,et al.. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing [J]. Angew. Chem. Int. Ed., 2010,49(50):9737-9739.

[10] LENG Y K,WU W J,LI L,et al.. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection [J]. Adv. Funct. Mater., 2016,26(42):7581-7589.

[11] JO D Y,KIM D,KIM J H,et al.. Tunable white fluorescent copper gallium sulfide quantum dots enabled by Mn doping [J]. ACS Appl. Mater. Interfaces, 2016,8(19):12291-12297.

[12] BUCELLA S G,LUZIO A,GANN E,et al.. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics [J]. Nat. Commun., 2015,6:8394-1-10.

[13] LI J,LIN J,HUANG Y,et al.. Organic fluorescent dyes supported on activated boron nitride:a promising blue light excited phosphors for high-performance white light-emitting diodes [J]. Sci. Rep., 2015,5:8492-1-7.

[14] WANG C X,WU J P,JIANG K L,et al.. Stable Ag nanoclusters-based nano-sensors:rapid sonochemical synthesis and detecting Pb2+ in living cells [J]. Sens. Actuators B:Chem., 2017,238:1136-1143.

[15] WANG H,SUN C,CHEN X R,et al.. Excitation wavelength independent visible color emission of carbon dots [J]. Nanoscale, 2017,9(5):1909-1915.

[16] JIANG K L,WU J P,WU Q,et al.. Stable fluorescence of green-emitting carbon nanodots as a potential nanothermometer in biological media [J]. Part. Part. Syst. Charact., 2017,34(2):1600197.

[17] FENG T,AI X Z,ONG H,et al.. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery [J]. ACS Appl. Mater. Interfaces, 2016,8(29):18732-18740.

[18] YANG Y H,CUI J H,ZHENG M T,et al.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan [J]. Chem. Commun., 2012,48(3):380-382.

[19] XIAO D L,YUAN D H,HE H,et al.. Microwave-assisted one-step green synthesis of amino-functionalized fluorescent carbon nitride dots from chitosan [J]. Luminescence, 2013,28(4):612-615.

[20] 王霞,吴文承,袁俊超,等. 微波原位法制备碳点/壳聚糖荧光复合物及其应用研究 [J]. 高分子学报, 2016(2):226-232.

    WANG X,WU W C,YUAN J C,et al.. In situ construction of fluorescent carbon dots/chitosan composites with straightforward applications [J]. Acta Polym. Sinica, 2016(2):226-232. (in Chinese)

[21] 汪雪琴,洪碧云,杨旋,等. 壳聚糖碳点的水热法制备及其对金属离子的选择性研究 [J]. 发光学报, 2019,40(3):289-297.

    WANG X Q,HONG B Y,YANG X,et al.. Hydrothermal preparation of chitosan carbon dots and their selectivity to metal ions [J]. Chin. J. Lumin., 2019,40(3):289-297. (in Chinese)

[22] 于淑娟,汪丰,罗振静,等. 壳聚糖基聚合物点荧光材料的合成及其对纸张的抗紫外老化性能 [J]. 发光学报, 2017,38(11):1443-1449.

    YU S J,WANG F,LUO Z J, et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and their UV aging resistance properties for paper [J]. Chin. J. Lumin., 2017,38(11):1443-1449. (in Chinese)

[23] HUANG H,WENG Y H,ZHENG L H,et al.. Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions,L-cysteine and iodide ions [J]. J. Colloid Interface Sci., 2017,506:373-378.

[24] ZENG T,HU X Q,WU H,et al.. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan [J]. Int. J. Biol. Macromol., 2019,131:760-768.

[25] OH B H,KIM A R,YOO D J. Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells [J]. Int. J. Hydrogen Energy, 2019,44(8):4281-4292.

[26] ZUO P L,LU X H,SUN Z G,et al.. A review on syntheses,properties,characterization and bioanalytical applications of fluorescent carbon dots [J]. Microchim. Acta, 2016,183(2):519-542.

[27] CHOI Y,THONGSAI N,CHAE A,et al.. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots [J]. J. Ind. Eng. Chem., 2017,47:329-335.

[28] NIE H,LI M J,LI Q S,et al.. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing [J]. Chem. Mater., 2014,26(10):3104-3112.

[29] ZENG Y W,MA D K,WANG W,et al.. N,S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids [J]. Appl. Surf. Sci., 2015,342:136-143.

[30] HU S L,TRINCHI A,ATKIN P,et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light [J]. Angew. Chem. Int. Edit., 2015,54(10):2970-2974.

[31] GU J J,WANG W N,ZHANG Q H,et al.. Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis [J]. RSC Adv., 2013,3(36):15589-15591.

[32] GUPTA A,KUMA N. A review of mechanisms for fluorescent “turn-on” probes to detect Al3+ ions [J]. RSC Adv., 2016,6(108):106413-106434.

[33] ZHOU L,LIN Y H,HUANG Z Z,et al.. Carbon nanodots as fluorescence probes for rapid,sensitive,and label-free detection of Hg2+ and biothiols in complex matrices [J]. Chem. Commun., 2012,48(8):1147-1149.

[34] XIA Y S,ZHU C Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ) [J]. Talanta, 2008,75(1):215-221.

[35] GORE A H,GUNJAL D B,KOKATE M R,et al.. Highly selective and sensitive recognition of cobalt(Ⅱ) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe:applications to environmental analysis [J]. ACS Appl. Mater. Interfaces, 2012,4(10):5217-5226.

[36] CHEN J,LI Y,LV K,et al.. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(Ⅱ) ion and sulfide anion in aqueous media and its imaging in live cells [J]. Sen. Actuators B:Chem., 2016,224:298-306.

[37] LIU Y S,ZHAO Y N,ZHANG Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(Ⅱ) ion detection [J]. Sens. Actuators B: Chem., 2014,196:647-652.

[38] HUANG S,YANG E L,YAO J D,et al.. Red emission nitrogen,boron,sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells [J]. Anal. Chim. Acta, 2018,1035:192-202.

于淑娟, 袁广志, 汪丰, 鲁诗言, 李媛媛. 壳聚糖衍生物基聚合物碳点对Pd2+的传感性能[J]. 发光学报, 2019, 40(12): 1546. YU Shu-juan, YUAN Guang-zhi, WANG Feng, LU Shi-yan, LI Yuan-yuan. Sensing Properties of Chitosan Derivatives-based Polymer Carbon Dots to Pd2+[J]. Chinese Journal of Luminescence, 2019, 40(12): 1546.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!