人工晶体学报, 2023, 52 (2): 220, 网络出版: 2023-03-18  

不同高径比下浮区晶体生长熔体内对流不稳定性分析

Analysis of Convective Instability in Melt of Floating Zone Crystal Growth with Different Aspect Ratio
作者单位
1 安徽工业大学微电子与数据科学学院,马鞍山 243032
2 南京航空航天大学航天学院,南京 210016
摘要
本文通过数值模拟的方法,研究了零重力条件下半浮区液桥内熔体热毛细对流的演化规律。在液桥的高度L和温差ΔT保持不变的情况下,通过改变液桥的半径R来改变液桥的高径比(Ar=L/R)。随着高径比Ar的变化,液桥内的对流表现出不同的流动特征。在Ar=0.5时,热毛细对流处于三维稳态;在Ar=1时,流场和温度场从稳态模式向非稳态周期多频振荡模式转变,它们之间的频率关系满足倍频关系(fn=nf1);在Ar=1.25时,监测点的速度振荡频率增大,表现为较小幅度的振荡模式,且温度振荡消失。
Abstract
In this paper, the evolution of thermocapillary convection in melt of half-floating zone liquid bridge under the condition of zero gravity was studied by means of numerical simulation. Under the condition that the height L of the liquid bridge and the temperature difference ΔT remain unchanged, the aspect ratio (Ar=L/R) of the liquid bridge can be changed by changing the radius R of the liquid bridge. The convection in the liquid bridge exhibits various flow characteristics with the change of the aspect ratio Ar. Thermocapillary convection is in a three-dimensional steady state when Ar=0.5. The flow field and temperature field change from the steady state mode to the unsteady periodic multi-frequency oscillation mode satisfying the frequency doubling relationship (fn=nf1) when Ar=1. When Ar=1.25, the velocity oscillation frequency of the monitoring point increases, showing a smaller amplitude oscillation mode, and the temperature oscillation disappears.
参考文献

[1] 李 凯, 胡文瑞. 非均匀磁场对空间浮区法晶体生长的影响[J]. 中国科学(A辑), 2001, 31(5): 466-473.

[2] LYUBIMOVA T P, SKURIDYN R V. The influence of vibrations on the stability of thermocapillary flow in liquid zone[J]. International Journal of Heat and Mass Transfer, 2014, 69: 191-202.

[3] MINAKUCHI H, OKANO Y, DOST S. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge[J]. Journal of Crystal Growth, 2017, 468: 502-505.

[4] HUANG H L, ZHU G P, ZHANG Y. Effect of Marangoni number on thermocapillary convection in a liquid bridge under microgravity[J]. International Journal of Thermal Sciences, 2017, 118: 226-235.

[5] JIN C H, OKANO Y, MINAKUCHI H, et al. Numerical simulation of thermo-solutal Marangoni convection in a full floating zone with radiative heat transfer under zero gravity[J]. Journal of Crystal Growth, 2021, 570: 126204.

[6] JAYAKRISHNAN R, TIWARI S. Dynamic mode decomposition of oscillatory thermo-capillary flow in curved liquid bridges of high Prandtl number liquids under microgravity[J]. Advances in Space Research, 2021, 68(10): 4252-4273.

[7] VARAS R, SALGADO SNCHEZ P, PORTER J, et al. Thermocapillary effects during the melting in microgravity of phase change materials with a liquid bridge geometry[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121586.

[8] KANG Q, WU D, DUAN L, et al. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2[J]. Physics of Fluids, 2020, 32(3): 034107.

[9] LE C C, LIU L J, LI Z Y. Thermocapillary instabilities in half zone liquid bridges of low Prandtl fluid with non-equal disks under microgravity[J]. Journal of Crystal Growth, 2021, 560/561: 126063.

[10] RYBICKI A, FLORYAN J M. Thermocapillary effects in liquid bridges. I. Thermocapillary convection[J]. The Physics of Fluids, 1987, 30(7): 1956-1972.

[11] VELTEN R, SCHWABE D, SCHARMANN A. The periodic instability of thermocapillary convection in cylindrical liquid bridges[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(2): 267-279.

[12] CHEN Q S, HU W R. Influence of liquid bridge volume on instability of floating half zone convection[J]. International Journal of Heat and Mass Transfer, 1998, 41(6/7): 825-837.

[13] FAN J G, LIANG R Q. Thermal-solutal capillary convection in binary mixture liquid bridge with various aspect ratios under microgravity[J]. Journal of Crystal Growth, 2022, 586: 126630.

[14] KUHLMANN H C, NIENHSER C. Dynamic free-surface deformations in thermocapillary liquid bridges[J]. Fluid Dynamics Research, 2002, 31(2): 103-127.

[15] KUHLMANN H C, NIENHSER C. The influence of static and dynamic free-surface deformations on the three-dimensional thermocapillary flow in liquid bridges[M]//Interfacial Fluid Dynamics and Transport Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 213-239.

[16] DOLD P, CRLL A, LICHTENSTEIGER M, et al. Floating zone growth of silicon in magnetic fields:Ⅳ.Rotating magnetic fields[J]. Journal of Crystal Growth, 2001, 231(1/2): 95-106.

[17] WALKER J S, WITKOWSKI L M, HOUCHENS B C. Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process[J]. Journal of Crystal Growth, 2003, 252(1/2/3): 413-423.

[18] 袁章福, 柯家骏, 李 晶. 金属及合金的表面张力[M]. 北京: 科学出版社, 2006.

[19] 邹 勇, 朱桂平, 李 来, 等. 旋转磁场下辐射加热温度对空间浮区对流的影响[J]. 中国科学院大学学报, 2018, 35(2): 261-269.

[20] LEVENSTAM M, AMBERG G. Hydrodynamical instabilities of thermocapillary flow in a half-zone[J]. Journal of Fluid Mechanics, 1995, 297: 357-372.

王苗苗, 张传成, 任浩, 唐绪兵, 丁守军, 邹勇, 黄护林. 不同高径比下浮区晶体生长熔体内对流不稳定性分析[J]. 人工晶体学报, 2023, 52(2): 220. WANG Miaomiao, ZHANG Chuancheng, REN Hao, TANG Xubing, DING Shoujun, ZOU Yong, HUANG Hulin. Analysis of Convective Instability in Melt of Floating Zone Crystal Growth with Different Aspect Ratio[J]. Journal of Synthetic Crystals, 2023, 52(2): 220.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!