光谱学与光谱分析, 2021, 41 (6): 1936, 网络出版: 2021-07-16  

“黄蜂石”的矿物成分及谱学特征研究

Study on the Mineral Composition and Spectral Characteristics of “Bumblebee Stone”
作者单位
1 广州城市理工学院珠宝学院, 广东 广州 510800
2 梧州学院, 广西 梧州 543002
摘要
近期在广州荔湾珠宝市场出现一种具黄、 黑条带的玉石品种, 因其花纹形如黄蜂, 商家称之为“黄蜂石”。 “黄蜂石”的条纹状结构与缟玛瑙的条带状纹理非常相似, 容易混淆。 对“黄蜂石”进行显微岩相学、 X射线粉晶衍射、 电子探针、 红外吸收光谱及拉曼光谱等分析, 旨在探求其基本物理性质、 矿物组成, 以及谱学特征。 结果显示: “黄蜂石”以灰白、 黄橙、 黑色为主, 莫氏硬度3~5, 相对密度2.58~2.73, 长波紫外光下具弱黄色荧光, 与稀盐酸反应起泡。 显微岩相学分析显示, “黄蜂石”基质为方解石, 呈不规则粒状, 粒径0.02~0.3 mm, 粒状、 纤维状结构。 “黄蜂石”中CaO的含量约为53.64%~56.66%, FeO的含量约为2.23%~3.62%, MgO的含量约为1.05%~1.79%, 部分测试点中出现As和S元素。 样品中Mg/Ca摩尔百分比为2.59%~4.68%, 为低镁方解石。 红外吸收光谱分析显示, “黄蜂石”的红外光谱特征吸收峰与碳酸盐类矿物理论值一致, 为1 514, 1 427, 881和710 cm-1, 由[CO3]2-不对称伸缩振动、 面内弯曲振动以及面外弯曲振动导致; 黑色矿物中存在黄铁矿的特征峰1 123, 1 050, 423, 1 123和1 050 cm-1为S-S伸缩振动, 423 cm-1为Fe2+-[S2]2-伸缩振动。 拉曼光谱分析显示, 样品的黄色部分中除具方解石的拉曼位移1 083, 713, 282和157 cm-1外, 还有副雄黄的拉曼峰346, 233和184 cm-1; 橙红色部分显示雄黄的拉曼特征峰338, 221及184 cm-1, 338 cm-1由S-As-S伸缩振动所致, 221 cm-1属于S-As-S弯曲振动结合As-S伸缩振动产生, 184 cm-1与As-As伸缩振动相匹配。 X射线粉晶衍射分析结果与红外吸收光谱、 拉曼光谱等测试结果一致, 即“黄蜂石”的主要矿物是方解石, 次要矿物为黄铁矿、 雄黄及副雄黄等, 根据国家标准可定名为“碳酸盐质玉”。
Abstract
Recently, a kind of jade with yellow and black stripes appeared in the Liwan jewelry market in Guangzhou. It is called “Bumblebee stone” because of its patterns. The stripe structure of “Bumblebee stone” is similar to that of Sardonyx, which is easy to be confused. In this paper, the “Bumblebee stone” was determined by a petrographic microscope, X-ray diffraction, electron probe micro analysis, Fourier transform infrared spectroscopy and Raman spectroscopy, and the basic Basic physical properties, mineral composition and spectral characteristics were studied. The results showed that the color of “Bumblebee stone” was mainly gray, yellow, orange and black, with a hardness of 3~5 and a relative density of 2.58~2.73. It has weak yellow fluorescence under long wave ultraviolet light and releases gas by reacting with dilute hydrochloric acid. Microscopic petrographic analysis showed that the matrix mineral of “Bumblebee stone” was calcite an irregular and granular fibrous, with a particle size of 0.02~0.3 mm. CaO, FeO and MgO content in “Bumblebee stone” was 53.64%~56.66%, 2.23%~3.62% and 1.05%~1.79%, respectively. As and S element were found in some test points. The mol percentage of Mg/Ca in the sample was 2.59%~4.68%, which was low magnesium calcite. Fourier transform infrared spectroscopy analysis showed that the main characteristic peak of “Bumblebee stone” coincides with the theoretical value of carbonate minerals, namely 1 514, 1 427, 881, 710 cm-1, which caused by asymmetric stretching vibration, in-plane bending vibration and out-of-plane bending vibration of CO2-3. There are characteristic peaks of pyrite in the black part of “Bumblebee stone”, of which 1 123, 1 050 cm-1 is S-S stretching vibration and 423 cm-1 is Fe2+-[S2]2- stretching vibration. Raman analysis showed that the yellow part of the “Bumblebee stone” sample have both the calcite Raman shifts of 1 083, 713, 282 and 157 cm-1, and pararealgar Raman peaks of 346, 233, 184 cm-1. Besides, the orange-red part of the “Bumblebee stone” sample showed the Raman characteristic peaks of realgar at 338, 221 and 184 cm-1, which were caused by S-AS-S stretching vibration, S-As-S bending vibration combined with As-S stretching vibration, and As-As stretching vibration, respectively. The results of X-ray powder diffraction are consistent with those of infrared absorption spectrometry analysis and Raman spectrometry analysis, showing that the main mineral of “Bumblebee stone” is calcite, and the secondary minerals are pyrite, realgar and pararealgar. According to the national standards, it can be named “Carbonate jade”.
参考文献

[1] WU Xiu-rong, GAO Xiao-wei, ZENG Guo-ping(吴秀荣, 高小卫, 曾国平). Geology and Minerals Resources of South China(华南地质与矿产), 2019, 35(1): 31.

[2] Serras Herman H. Rock & Gem, 2013, 43(8): 26.

[3] Serras Herman H. Gems & Jewellery, 2015, 24(6): 26.

[4] Emmanuel Fritsch, Joel Ivey. The Journal of Gemmology, 2018, 36(3): 228.

[5] YIN Xiao, CHI Guang-cheng, CHI Hui-zhong, et al(殷 晓, 迟广成, 迟惠中, 等). Liaoning Chemical Industry(辽宁化工), 2016, 45(5): 552.

[6] SU Wang, JIANG Qing-chun, CHEN Zhi-yong, et al(苏 旺, 江青春, 陈志勇, 等). Marine Origin Petroleum geology(海相油气地质), 2017, 22(1): 1.

[7] WANG Rui, YU Ke-fu, WANG Ying-hui, et al(王 瑞, 余克服, 王英辉, 等). Advances in Earth Science(地球科学进展), 2017, 32(3): 221.

[8] YANG Nian, KUANG Shou-ying, YUE Yun-hui(杨 念, 况守英, 岳蕴辉). J. Mineral Petrol.(矿物岩石), 2015, (4): 37.

[9] WANG Dong-li, SHEN Jun-feng, DONG Guo-chen, et al(王冬丽, 申俊峰, 董国臣, 等). Geological Survey of China(中国地质调查), 2017, (4): 60.

[10] MING Jing, CHEN Long, HUANG Bi-sheng, et al(明 晶, 陈 龙, 黄必胜, 等). Lishizhen Medicine and Materia Medica Research(时珍国医国药), 2016, 27(10): 2423.

[11] FU Wan-lu, YUAN Xue-yin(付宛璐, 袁学银). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(7): 2053.

刘嘉钧, 罗洁, 岳素伟, 徐亚兰. “黄蜂石”的矿物成分及谱学特征研究[J]. 光谱学与光谱分析, 2021, 41(6): 1936. LIU Jia-jun, LUO Jie, YUE Su-wei, XU Ya-lan. Study on the Mineral Composition and Spectral Characteristics of “Bumblebee Stone”[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1936.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!