压电与声光, 2023, 45 (6): 926, 网络出版: 2024-01-04  

面向光电子器件的铌酸锂键合技术研究进展

Research Progress in Lithium Niobate Bonding Technology for Optoelectronic Devices
作者单位
1 天通凯巨科技有限公司,江苏 徐州 221000
2 天通控股股份有限公司,浙江 嘉兴 314000
3 天通凯巨科技有限公司,江苏 徐州 221000天通控股股份有限公司,浙江 嘉兴 314000
摘要
铌酸锂作为一种优良的多功能晶体材料,在光学、声学、电学和电子领域应用较广。已有研究表明,在集成光电子器件应用中对铌酸锂晶片进行键合,可提高器件的传输频率,降低损耗,实现高集成密度。该文总结了近年来国内外有关铌酸锂晶片键合技术的研究现状,介绍了键合强度的分析方法,以及铌酸锂键合晶圆在集成光电子器件中的最新研究进展,展望了铌酸锂键合技术的未来发展。
Abstract
Lithium niobate, as an excellent multifunctional crystal material, has been widely used in the fields of optics, acoustics, electricity and electronics. Some studies have shown that in the application of integrated optoelectronic devices, lithium niobate wafer bonding can increase the transmission frequency of the device, reduce losses, and achieve high integration density. This paper summarizes the research status of lithium niobate wafer bonding technology at home and abroad in recent years, introduces the analysis methods of bonding strength, and the latest progress of lithium niobate bonded wafers in integrated optoelectronic devices, and looks forward to the future development of lithium niobate bonding technology.
参考文献

[1] 孙军,郝永鑫,张玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-959.

[2] 李庚霖,贾曰辰,陈峰.绝缘体上铌酸锂薄膜片上光子学器件的研究进展[J].物理学报,2020,69 (15):157801.

[3] 张涛,何杰,胡少勤,等.集成铌酸锂光子器件技术的研究进展[J].压电与声光,2020,42(6):837-842.

[4] 郭宏杰,刘海锋,王振诺,等.基于铌酸锂薄膜的Y波导集成调制器设计[J].红外与毫米波学报,2022,41(3):626-630.

[5] 郝继山,向伟玮.微系统三维异质异构集成与应用[J].电子工艺技术,2018(6):317.

[6] CHU K,PARK S,LEE C,et al.Effect of multiple flip chip assembly on the mechanical reliability of eutectic Au-Sn solder joint[J].Journal of Materials Science:Materials in Electronics,2016,27(9):9941-9946.

[7] GIBSON P S,KATHERINE H,KEVIN S J,et al.Single step bonding of thick anodized aluminum oxide templates to silicon wafers for enhanced system on a chip performance[J].Journal of Power Sources,2020,474:228643.

[8] WU D W,TIAN W C,WANG C Q,et al.Research of wafer level bonding process based on Cu-Sn eutectic[J].Micromachines,2020,11(9):789.

[9] CHEN Z H,YU D Q,ZHONG Y.Development of 3D wafer level hermetic packaging withthrough glass vias and transient liquid phasebonding technology for RF Filter[J].Sensors,2022,22(6):2114.

[10] YANG S,QU Y F,DENG N K,et al.Effects of surface activation time on Si-Si direct wafer bonding at room temperature[J].Materials Research Express,2021,8 (8):1543.

[11] 肖卫平,朱慧珑.应用于三维集成的晶圆级键合技术[J].微电子学,2012,42(6):836-841.

[12] 王成君,胡北辰,杨晓东,等.3D集成晶圆键合装备现状及研究进展[J].电子工艺技术,2022,43(2):63-67.

[13] 刘玲,曹家强,陈华志,等.光纤耦合声光调制器键合膜系设计与制备[J].压电与声光,2020,42(4):484-487.

[14] 刘逸群,张宏伟,戴风伟.面向三维集成应用的Cu/SiO2晶圆级混合键合技术研究进展[J].微电子学,2022,52(4):623-634.

[15] QI X Q,LOH H Y,TAIMRE T,et al.Self-pulsations in terahertz quantum cascade lasers under strong optical feedback:The effect of multiple reflections in the external cavity[J].Sensors,2022,22(21):8501.

[16] ZHU H Q,ZHU H,WANG K,et al,Terahertz master-oscil-lator power-amplifier quantum Cascade laser with control-lable polarization[J].Appl Phys Lett,2020,117:02110.

[17] LOMONACO Q,ABADIE K,MORALES C,et al.Stress engineering in germanium-silicon heterostructure using surface activated hot bonding[J].ECS Transactions,2022,109(4):1503-1509.

[18] HU L X,GOH S C K,TAO J,et al.Time dependent evolution study of Ar/N2 plasma-activated Cu surface for enabling two-step Cu-Cu direct bonding in a non-vacuum environment[J].ECS Journal of Solid State Science and Technology,2021,10:12.

[19] YANG S,QU Y F,DENGN K,et al.Effects of surface activation time on Si-Si direct wafer bonding at room temperature[J].Materials Research Express,2021,8 (8):1543.

[20] ZHAO Y Q,LIU W,BAOY D,et al.Plasma-activated GaAs/Si wafer bonding with high mechanical strength and electrical conductivity[J].Materials Science in Semiconductor Processing,2022,143: 106481.

[21] 王鑫微.面向集成光电子器件的硅-铌酸锂异质键合研究[D].重庆: 重庆大学,2022.

[22] 李云飞.单晶铌酸锂光学器件硅基键合集成技术的研究[D].成都:电子科技大学,2022.

[23] 李杰.离子注入剥离法制备单晶铌酸锂薄膜研究[D].成都:电子科技大学,2017.

[24] HE M B,XU M Y,REN Y X,et al.High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J].Nature Photonics,2019,13(5):359-364.

[25] XU M Y,HE M B,WEN X Q,et al.Hybrid silicon and lithium niobate michelson interferometer modulator[J].APL Photonics,2019,10(4):1-3.

[26] ROELKENS G,VAN THOURHOUT D,BAETS R.Semiconductor technology-ultra-thin benzocyclobutene bonding of III-V dies onto SOI substrate[J].Electronics Letters,2005,41(9):561.

[27] SONG Z,WU D,ZHU H,et al.Void-formation in uncured and partially-cured BCB bonding adhesive on patterned surfaces[J].Microelectronic Engineering,2015,137:164-168.

[28] TAKIGAWA R,HIGURASHI E,SUGAT,et al.Room-temperature transfer bonding of lithium niobate thin film on micromachined silicon substrate with Au microbumps[J].Sensors and Actuators,A:Physical,2017,264:274-281.

[29] KAWANO H,TAKIGAWA R,IKENOUE H,et al.Bonding of lithium niobate to silicon in ambient air using laser irradiation[J].Jpn J Appl Phys,2016,55(8):8-9.

[30] TAKIGAWA R,KAWANO H,IKENOUE H,et al.Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation[J].Jpn J Appl Phys,2017,56(8):088002.

[31] SHUAI Y,GONG C,BAI X,et al.Fabrication of Y128-and Y36-cut lithium niobate singlecrystalline thin films by crystal-ion-slicing technique[J].Jpn J Appl Phys,2018,57(4 Suppl.):1-5.

[32] WANG C,ZHANG M,CHEN X,et al.Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J].Nature,2018,562(7725):101-104.

[33] 欧欣.一种临时键合和解键合方法、载片结构及应用: CN111834279[P].2021-08-17.

[34] 刘泽翰,康汝燕,程鹏鹏,等.晶圆低温直接键合技术研究进展[J].半导体光电,2021,42(5):603-609.

[35] TAKAGI H,UTSUMI J,TAKAHASHI M,et al.Room-temperature bonding of oxide wafers by Ar beam surface activation[J].ECS Transactions,2008,16:531-537.

[36] 郭怀新,戴家赞,潘斌,等.GaAs/Si晶圆片键合偏差及影响因素研究[J].固体电子学研究与进展,2021,41(1):10-13.

[37] 刘洪刚.一种低温晶圆键合方法:CN103832970[P].2016-06-15.

[38] TAKIGAWA R,HIGURASHI E,ASANO T.Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding method[J].Jpn J Appl Phys,2018,57(6):1-5.

[39] WANG C X,TADATOMO S.Room-temperature direct bonding using fluorine containing plasma activation[J].Journal of The Electrochemical Society,2011,158(5):525-529.

[40] 耿文平.一种晶圆键合方法以及相应的异质衬底制备的方法:CN109786229[P].2021-07-02.

[41] 许继开.LiNbO3与硅基材料表面活化低温直接键合及应用研究[D].哈尔滨:哈尔滨工业大学,2021.

[42] XU J K,DU Y,TIAN Y H,et al.Progress in wafer bonding technology towards MEMS,high-power electronics,optoelectronics,and optofluidics[J].International Journal of Optomechatronics,2020,14(1):94-118.

[43] 王晨曦.一种利用先真空紫外光再氮等离子体两步活化直接键合铌酸锂和硅晶片的方法:CN109166793 [P].2021-11-09.

[44] JIANG M,YU M,LI B,et al.Al-Sn-Al bonding strength investigation based on deep learning model[J].Processes,2022,10(10):1899.

[45] YOO S L,GUN-DUK K,KIM W J,et al.Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J].Optics Letters,2011,36(7):1119-1121.

[46] CHEN L,WOOD M G,REANO R M.12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes [J].Optics Express,2013,21(22):27003-27010.

[47] CAI L,KONG R,WANG Y,et al.Channel waveguides and Y-junctions in X-cut single-crystal lithium niobate thin film[J].Optics Express,2015,23(22):29211-29221.

[48] WANG M K,LI J H,YAO H,et al.A cost-effective edge couple with high polarization selectivity for thin film lithium niobate modulators[J].Journal of Lightwave Technology,2022,40(4):1105-1111.

[49] 帅垚.基于单晶铌酸锂薄片的薄膜体声波谐振器及其制备方法: CN106209001[P].2019-02-15.

[50] 周长见.一种高频声表面波谐振器及其制备方法: CN114513186[P].2023-03-24.

[51] WEIGEL P,ZHAO J,FANG K,et al.Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth [J].Optics Express,2018,26(18): 23728-23739.

[52] XU Mengyue,CHEN Wenjun,HE Mingbo,et al.Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J].Apl Photonics,2019,10(4):100802.

[53] THOMASCHEWSKI M,ZENIN V A,WOLFF C,et al.Plasmonic monolithic lithium niobate directional coupler switches[J].Nature Communications,2020,11(1):1-6.

[54] AHMED A R,NELAN S,SHI S Y,et al.Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J].Optics Letters,2020,45(5):1112-115.

[55] 王广庆,张磊,常林,等.铌酸锂-氮化硅波导与激光器异质集成结构及其制备方法: CN115951454[P].2023-05-30.

[56] 程进,刘卫国,刘欢,等.用于SAW器件制造的键合减薄技术[J].压电与声光,2013,35(2):159-160.

[57] PARFENOV M,AGRUZOV P,ILICHEV I,et al.Design of hybrid waveguide structures for high efficiency integrated optical superconducting single photon detectors on Ti∶LiNbO3 waveguides[J].IEEE Photonics Journal,2021,13(6):1-7.

孔辉, 沈浩, 张忠伟, 钱煜, 濮思麒, 徐秋峰, 王勤峰. 面向光电子器件的铌酸锂键合技术研究进展[J]. 压电与声光, 2023, 45(6): 926. KONG Hui, SHEN Hao, ZHANG Zhongwei, QIAN Yu, PU Siqi, XU Qiufeng, WANG Qinfeng. Research Progress in Lithium Niobate Bonding Technology for Optoelectronic Devices[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 926.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!