大气与环境光学学报, 2022, 17 (3): 294, 网络出版: 2022-07-22  

伊宁市冬季PM2.5输送特征及污染源地分析

Transport characteristics and pollution sources of PM2.5 in Yining City in winter
作者单位
新疆师范大学地理科学与旅游学院, 新疆干旱区湖泊环境与资源自治区重点实验室, 新疆 乌鲁木齐 830054
摘要
利用全球数据同化系统 (GDAS) 气象资料和生态环境部环境监测总站的 PM2.5 浓度数据, 使用 MeteoInfo 软件和 TrajStat 插件的聚类方法和聚类统计对 2018 年 12 月-2019 年 1 月到达伊宁市主城区的气流轨迹进行了聚类分析, 运用潜在源贡献 (PSCF) 及浓度权重轨迹 (CWT) 分析了伊宁市主城区 PM2.5 潜在源贡献率 (WPSCF) 和轨迹权重浓度 (WCWT)。 结果显示: a) 轨迹聚类分析表明该区受西南气团影响最大, 主要来自哈萨克斯坦和吉尔吉斯斯坦; b) WPSCF 和 WCWT 分布特征类似, 重度污染源区 WPSCF 最高在 0.7~0.8 以上, WCWT 最高值在 80~110 μg·m-3, 潜在源主要集中在昭苏-特克斯盆地。
Abstract
Based on the meteorological data of Global Data Assimilation System (GDAS) and PM2.5 concentration data from the China National Environmental Monitoring Station of the Ministry of Ecology and Environment, using MeteoInfo and TrajStat plug-in, a cluster analysis on the airflow trajectory reaching the main urban area of Yining City, China, from December 2018 to January 2019 was carried out, and then the weighted potential source contribution probability (WPSCF) and the weighted concentration weight trajectory (WCWT) of PM2.5 in the main urban area of Yining City was analyzed by using potential source contribution function (PSCF) analysis and concentration weighted trajectory model (CWT) analysis. The results show that: a) Trajectory clustering shows that the region is most affected by the southwest air mass, mainly from Kazakhstan and Kyrgyzstan. b) The WPSCF and WCWT distribution feature are similar, and the highest WPSCF and WCWT in the heavily polluted source area are above 0.7~0.8 and 80~110 μg·m-3 respectively, which are mainly concentrated in Zhaosu-Tekes Basin.
参考文献

[1] Pschl U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46): 7520-7540.

[2] Sun C, Lang J L, Sun X W. Analysis of the transportation of PM2.5 in the middle and lower reaches of the Yangtze River[J]. Environmental Protection Science, 2018, 44(4): 27-34.

[3] Chen D S, Liu X X, Lang J L, et al. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain[J]. Science of the Total Environment, 2017, 583: 280-291.

[4] Ma Q X, Wu Y F, Zhang D Z, et al. Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing[J]. Science of the Total Environment, 2017, 599/600: 246-253.

[5] Wen W, Ma X, Wei P, et al. Understanding the regional transport contributions of primary and secondary PM2.5 components over Beijing during a severe pollution episodes[J]. Aerosol and Air Quality Research, 2018, 18(7): 1720-1733.

[6] She Q N, Xu Q, Zhou T Y, et al. Characteristics of heavy air pollution episode and its impacting factors in the Yangtze River Delta during 2015[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3185-3196.

[7] Li L, An J Y, Lu Q. Modeling assessment of PM2.5 concentrations under implementation of clean air action plan in the Yangtze River Delta region[J]. Research of Environmental Sciences, 2015, 28(11): 1653-1661.

[8] Han X, Zhang M G, Zhu L Y, et al. Assessment of the impact of emissions reductions on air quality over North China Plain[J]. Atmospheric Pollution Research, 2016, 7(2): 249-259.

[9] Ma Q, Chen T R, Chen C H, et al. Study on the atmosphere pollution characteristics and regional transport in Jiaxing[J]. Environmental Pollution & Control, 2020, 42(4): 467-471.

[10] Salameh D, Detournay A, Pey J, et al. PM2.5 chemical composition in five European Mediterranean cities: A 1-year study[J]. Atmospheric Research, 2015, 155: 102-117.

[11] Fu C B, Dan L, Tang J X, et al. Analysis of air polluted transportation and potential source in Haikou City based on trajectory model[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 36-42.

[12] Jiang Y, Liu Y Y, Zong L, et al. Analysis of characteristics and potential sources of PM2.5 external transportation in Hengyang in winter[J]. Environmental Engineering, 2019, 37(7): 142-147.

[13] Ren C B, Wu L X, Zhang Y Y, et al. Analyze to the seasonal differences of transport pathways and potential source-zones of Beijing Urban PM2.5[J]. China Environmental Science, 2016, 36(9): 2591-2598.

[14] Tian Y, Miao J F, Zhao T L. A numerical simulation of mountain-plain breeze circulation during a heavy pollution event in eastern Chengdu[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 53-75.

[15] Zhang X F. Research on the transport and diffusion of air pollution in mountainous areas and urban areas in China[J]. Environmental Science, 1979, (4): 12-17.

[16] Li Y, Song X M. The temporal and spatial distribution characteristics of heavy fog in Yining[J]. Desert and Oasis Meteorology, 2008, 2(4): 34-36.

[17] Zhou C H. Analyzing atomospheric environment pollution character and improving measure of Yining City[J]. Environmental Protection of Xinjiang, 2006, 28(2): 39-42.

[18] Wang J. Pollution Characteristics and Transportation Pathways of Air Pollutants in the Main Urban Area of Harbin[D]. Harbin: Harbin Institute of Technology, 2018.

[19] Wang J Y, Cui C G, Wang X F, et al. Analysis on water vapor transport and budget of the severe torrential rain over Beijing region on 21 July 2012[J]. Meteorological Monthly, 2014, 40(2): 133-145.

[20] Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis[J]. Meteorological Applications, 2014, 21(2): 360-368.

[21] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Ambient air quality standard: GB 3095-2012[S]. Beijing: China Environment Science Press, 2016.

[22] Li J. Characteristics, Source, Long-range Transport of Dust Aerosol over the Central Asia and Its Potential Effect on Global Change[D]. Shanghai: Fudan University, 2009.

[23] Liu X G, Li J, Qu Y, et al. Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China[J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4501-4514.

[24] Zhang H Y, Cheng S Y, Yao S, et al. Multiple perspectives for modeling regional PM2.5 transport across cities in the Beijing-Tianjin-Hebei region during haze episodes[J]. Atmospheric Environment, 2019, 212: 22-35.

[25] Jia J, Cong Y, Gao Q M, et al. Formation mechanism and source analysis of two heavy pollution periods in winter in a central plains city[J]. Environmental Science, 2020, 41(12): 5256-5266.

[26] Meng Q, Bai H Y, Zhao T, et al. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.

[27] Li X, Jia J. Research of the influences of the air flows on multiple scales on the transport and diffusion mechanisms of urban air pollution over the complex terrains[J]. Desert and Oasis Meteorology, 2016, 10(6): 1-10.

[28] Liu X, Li Y C, He J, et al. Study on PM2.5 transport characteristics and pollution source in the winter of Chongqing[J]. Environmental Science & Technology, 2018, 41(9): 134-141.

张乐乐, 孙慧兰, 杨余辉, 卢宝宝, 刘天弋, 兰小丽, 曹丽君. 伊宁市冬季PM2.5输送特征及污染源地分析[J]. 大气与环境光学学报, 2022, 17(3): 294. ZHANG Lele, SUN Huilan, YANG Yuhui, LU Baobao, LIU Tianyi, LAN Xiaoli, Cao Lijun. Transport characteristics and pollution sources of PM2.5 in Yining City in winter[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 294.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!