人工晶体学报, 2023, 52 (11): 2076, 网络出版: 2023-12-05  

Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化

Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell
作者单位
兴义民族师范学院物理与工程技术学院,兴义 562400
摘要
Sn基钙钛矿材料因其无毒、较宽带隙和热稳定性成为太阳能电池研究领域的热点。本文利用SCAPS-1D软件构建了结构为FTO/TiO2/CH3NH3SnI3/Spiro-OMeTAD/Ag钙钛矿太阳能电池并对其相关性能进行了数值计算。研究了钙钛矿光吸收层厚度、空穴传输层厚度、空穴传输层和钙钛矿光吸收层间面缺陷,以及工作温度对器件性能的影响, 然后对器件性能进行优化。经优化后, 钙钛矿太阳能电池的光电转换效率为30.955%。通过理论分析进一步为提高钙钛矿太阳能电池的光电转换效率提供了新的思路。
Abstract
With non-toxic nature, wide bandgap, and thermal stability, Sn-based perovskite materials have become a hot topic in the field of perovskite solar cell research. In this paper, the SCAPS-1D software was used to construct the FTO/TiO2/CH3NH3SnI3/Spiro-OMeTAD/Ag perovskite solar cells and the performances of the constructed cells were calculated. The effects of the thickness of absorption and hole buffer layer, the surface defects between hole buffer layer and absorption layer, and the operating temperature on the device performance were studied, then the device performance was optimized. The photoelectric conversion efficiency of the optimized perovskite solar cell is 30.955%. The theoretical analysis suggests a new approach for enhancing the photoelectric conversion efficiency of perovskite solar cells.
参考文献

[1] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235.

[2] JUNG H S, PARK N G. Perovskite solar cells: from materials to devices[J]. Small, 2015, 11(1): 10-25.

[3] WU T H, QIN Z Z, WANG Y B, et al. The main progress of perovskite solar cells in 2020-2021[J]. Nano-Micro Letters, 2021, 13(1): 152.

[4] ALLA M, MANJUNATH V, CHAWKI N, et al. Optimized CH3NH3PbI3XClX based perovskite solar cell with theoretical efficiency exceeding 30%[J]. Optical Materials, 2022, 124: 112044.

[5] JAISWAL R, RANJAN R, SRIVASTAVA N, et al. Numerical study of eco-friendly Sn-based perovskite solar cell with 25.48% efficiency using SCAPS-1D[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(8): 753.

[6] LUO W, XU J X, LIU S Y. Optimization of all-inorganic CsPbI3-based inverted perovskite solar cells by numerical simulation[J]. Journal of Electronic Materials, 2023, 52(3): 2216-2226.

[7] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

[8] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(7): 657-667.

[9] NAKKA L, CHENG Y H, ABERLE A G, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells[J]. Advanced Energy and Sustainability Research, 2022, 3(8): 2200045.

[10] MEHRABIAN M, AFSHAR E N, AKHAVAN O. TiO2 and C60 transport nanolayers in optimized Pb-free CH3NH3SnI3-based perovskite solar cells[J]. Materials Science and Engineering: B, 2023, 287: 116146.

[11] ZHOU P, BU T L, SHI S W, et al. Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer[J]. Journal of Materials Chemistry C, 2018, 6(21): 5733-5737.

[12] IMANI S, SEYED-TALEBI S M, BEHESHTIAN J, et al. Simulation and characterization of CH3NH3SnI3-based perovskite solar cells with different Cu-based hole transporting layers[J]. Applied Physics A, 2023, 129(2): 1-13.

[13] ISLAM M B, YANAGIDA M, SHIRAI Y, et al. NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility[J]. ACS Omega, 2017, 2(5): 2291-2299.

[14] ALLA M, BIMLI S, MANJUNATH V, et al. Towards lead-free all-inorganic perovskite solar cell with theoretical efficiency approaching 23%[J]. Materials Technology, 2022, 37(14): 2963-2969.

[15] BOUAZIZI S, TLILI W, BOUICH A, et al. Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator[J]. Materials Research Express, 2022, 9(9): 096402.

[16] ZHANG P, WU J A, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials[J]. Advanced Materials, 2018, 30(3): 1703737.

[17] LU H, TIAN W, GU B K, et al. TiO2 electron transport bilayer for highly efficient planar perovskite solar cell[J]. Small, 2017, 13(38): 1701535.

[18] SINGH A K, SRIVASTAVA S, MAHAPATRA A, et al. Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation[J]. Optical Materials, 2021, 117: 111193.

[19] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494.

[20] PATEL P K. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell[J]. Scientific Reports, 2021, 11: 3082.

[21] MOTTAKIN M, SOBAYEL K, SARKAR D, et al. Design and modelling of eco-friendly CH3NH3SnI-3 based perovskite solar cells with suitable transport layers[J]. Energies, 2021, 14(21): 7200.

[22] KANOUN A A, KANOUN M B, MERAD A E, et al. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach[J]. Solar Energy, 2019, 182: 237-244.

[23] HUNDE B R, WOLDEYOHANNES A D. Performance analysis and optimization of perovskite solar cell using SCAPS-1D and genetic algorithm[J]. Materials Today Communications, 2023, 34: 105420.

[24] BHATTARAI S, DAS T D. Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell[J]. Solar Energy, 2021, 217: 200-207.

[25] KUMAR M, RAJ A, KUMAR A, et al. Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in lead-free MASnI3 perovskite solar cell device[J]. International Journal of Energy Research, 2022, 46(8): 11456-11469.

[26] SLAMI A, BOUCHAOUR M, MERAD L. Numerical study of based perovskite solar cells by SCAPS-1D[J]. International Journal of Energy and Environment, 2019, 3: 17-21.

[27] ALIAGHAYEE M. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D[J]. Journal of Electronic Materials, 2023, 52(4): 2475-2491.

[28] MOHANTY I, MANGAL S, SINGH U P. Defect optimization of CZTS/MASnI3 heterojunction solar cell yielding 30.8% efficiency[J]. Journal of Electronic Materials, 2023, 52(4): 2587-2595.

[29] MUSHTAQ S, TAHIR S, ASHFAQ A, et al. Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation[J]. Solar Energy, 2023, 249: 401-413.

王传坤, 陆成伟, 欧阳雨洁, 张胜军, 郝艳玲. Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化[J]. 人工晶体学报, 2023, 52(11): 2076. WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell[J]. Journal of Synthetic Crystals, 2023, 52(11): 2076.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!