大气与环境光学学报, 2022, 17 (6): 581, 网络出版: 2023-03-16   

卫星遥感温室气体的大气观测技术进展

Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing
作者单位
1 山东省济南生态环境监测中心, 山东 济南 250101
2 生态环境部卫星环境应用中心, 国家环境保护卫星遥感重点实验室, 北京 100094
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征重点实验室, 安徽 合肥 230031
摘要
全球、区域及城市的碳浓度、碳源汇信息是应对气候变化、达成双碳目标、完善国际谈判、支持治理政策制定与执行的重要依据。国际认可的 “自上而下” 方法将卫星观测作为基础的通量计算技术, 是验证温室气体排放清单的重要手段。系统介绍了温室气体的卫星探测载荷原理、类别和发展, 以及反演、估算 CO 2 、CH 4 和 N 2 O 的浓度和排放通量的方法, 还有探测缺失和误差存在的影响因素等; 分析了对卫星探测温室气体能力提高的迫切需求, 浓度反演和排放量估算精度不足, 以及 N 2 O、氟化物等其他温室气体遥感研究缺乏、地基遥感验证能力薄弱等问题; 最后总结了我国温室气体卫星遥感技术的发展趋势, 主要是面向主被动高时空分辨率卫星的研制应用、高精度多尺度排放量估算 (特别针对城市、小区域和点源尺度)、氟化物遥感评估等主题, 以加强对碳排放的量化观测, 并增强对碳循环的理解, 提高感知和应对气候变化的能力。
Abstract
In response to climate change, the information of global, regional and urban carbon concentration, as well as carbon source and sink is essential for achieving dual carbon goals, actively participating in international negotiations, and providing policymakers with reliable and up-to-date support. The “top-down” approach to carbon source-sink accounting, which uses satellite observations as the base flux calculation technology, has become an internationally recognized method for supporting and validating greenhouse gas emissions inventories. This paper systematically introduces the principle, category and development of the satellite detection payloads for greenhouse gases, the atmospheric remote sensing estimation methods for CO 2 , CH 4 , and N 2 O concentrations and emission fluxes, as well as the influencing factors of detection deficiency and errors. And the urgent demand for improving the detection capability of satellites for greenhouse gas, the insufficient accuracy of concentration inversion and emission estimation, the lack of remote sensing research on other greenhouse gases such as N 2 O and fluoride, and the weak verification capability of ground-based remote sensing are analyzed in depth. Finally, the future development trends of greenhouse gas satellite remote sensing technology in China are summarized, which are mainly focusing on the development and application of active and passive, high temporal and spatial resolution satellites, high-precision emission estimation (especially for cities, small areas and point source scales), and remote sensing assessment of fluoride, in order to promote the understanding of carbon cycle, and improve the ability to sense and respond to climate change.
参考文献

[1] WANG Q, LI Q, Chen L F, et al . Atmospheric Environment Satellite Remote Sensing Technology and Its Application [M]. Beijing: Science Press, 2011.

[2] Wang Z T, Ma P F, Zhang L J, et al . Systematics of atmospheric environment monitoring in China via satellite remote sensing [J]. Air Quality, Atmosphere & Health , 2021, 14(2): 157-169.

[3] Liu L Y, Chen L F, Liu Y, et al . Satellite remote sensing for global stocktaking: Methods, progress and perspectives [J]. National Remote Sensing Bulletin , 2022, 26(2): 243-267.

[4] Gitarskiy M L. The refinement to the 2006 IPCC guidelines for national greenhouse gas inventories [J]. Fundamental and Applied Climatology , 2019, 2: 5-13.

[5] Wang L W, Wei Y X. Monitoring gas concentration from carbon emissions by remote sensing [J]. Spectroscopy and Spectral Analysis , 2012, 32(6): 1639-1643.

[6] Chen L F, Zhang Y, Zou M M, et al . Overview of atmospheric CO 2 remote sensing from space [J]. Journal of Remote Sensing , 2015, 19(1): 1-11.

[7] Jacob D J, Turner A J, Maasakkers J D, et al . Satellite observations of atmospheric methane and their value for quantifying methane emissions [J]. Atmospheric Chemistry and Physics , 2016, 16(22): 14371-14396.

[8] Liu Y, Wang J, Che K, et al . Satellite remote sensing of greenhouse gases: Progress and trends [J]. National Remote Sensing Bulletin , 2021, 25(1): 53-64.

[9] Zhang X Y, Wang F, Wang W H, et al . The development and application of satellite remote sensing for atmospheric compositions in China [J]. Atmospheric Research , 2020, 245(3): 105056.

[10] Cai B F, Zhu S L, Yu S M, et al . The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory [J]. Environmental Engineering , 2019, 37(8): 1-11.

[11] Houweling S, Bergamaschi P, Chevallier F, et al . Global inverse modeling of CH 4 sources and sinks: An overview of methods [J]. Atmospheric Chemistry and Physics , 2017, 17(1): 235-256.

[12] Duan F H, Wang X H, Ye H H, et al . Carbon dioxide retrieval method based on statistics and optical path distribution [J]. Acta Optica Sinica , 2017, 37(5): 26-32.

[13] Schuck T J, Brenninkmeijer C A M, Slemr F, et al . Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft [J]. Atmospheric Measurement Techniques , 2009, 2(2): 449-464.

[14] Pison I, Bousquet P, Chevallier F, et al . Multi-species inversion of CH 4 , CO and H 2 emissions from surface measurements [J]. Atmospheric Chemistry and Physics , 2009, 9(14): 5281-5297.

[15] He Q, Yu T, Cheng T H, et al . Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatio-temporal characteristics analysis [J]. Journal of Geo-information Science , 2012, 14(2): 250-257.

[16] Zhang X Y, Meng X Y, Zhou M Q, et al . Review of the validation of atmospheric CO 2 from satellite hyper spectral remote sensing [J]. Climate Change Research , 2018, 14(6): 602-612.

[17] Yang D X, Liu Y, Cai Z N, et al . An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations [J]. Science Bulletin , 2015, 60(23): 2063-2066.

[18] Cai Z N, Liu Y, Yang D X. Analysis of XCO 2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements [J]. Science China Earth Sciences , 2014, 57(8): 1919-1928.

[19] Deng J B, Liu Y, Yang D X, et al . CH 4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity study and preliminary test with GOSAT data [J]. Chinese Science Bulletin , 2014, 59(14): 1499-1507.

[20] Zhao L. Remote Retrieval of Atmospheric CO 2 and CH 4 Using GOSAT [D]. Changchun: Jilin University, 2017.

[21] Jiang Y, Ye H H, Wang X H, et al . Correction of effect of plant chlorophyll fluorescence based on optical path distribution method [J]. Acta Optica Sinica , 2019, 39(4): 50-55.

[22] Yang D X, Liu Y, Cai Z N. Simulations of aerosol optical properties to top of atmospheric reflected sunlight in the near infrared CO 2 weak absorption band [J]. Atmospheric and Oceanic Science Letters , 2013, 6(1): 60-64.

[23] Ru F, Lei L P, Hou S S, et al . Evaluation of retrieval errors of greenhouse gas concentrations from GOSAT [J]. Remote Sensing Information , 2013, 28(1): 65-70.

[24] Clarmann T , Hopfner M, Kellmann S. Retrieval of temperature, H 2 O, O 3 , HNO 3 , CH 4 , N 2 O, ClONO 2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements [J]. Atmospheric Measurement Techniques , 2009, 2(1): 159-175.

[25] Fan M, Chen L F, Li S S, et al . Impacts of aerosol scattering on the short-wave infrared satellite observations of CO 2 [C]. IEEE International Geoscience and Remote Sensing Symposium. Beijing, China. IEEE : 367-369.

[26] Tselioudis G, Lacis A A, Rind D, et al . Potential effects of cloud optical thickness on climate warming [J]. Nature , 1993, 366(6456): 670-672.

[27] Jiang X H. Research on Cloud Detection and CO 2 Inversion Algorithms in Greenhouse Gas Remote Sensing [D]. Beijing: University of Chinese Academy of Sciences, 2015.

[28] Liu Y, Cai Z N, Yang D X, et al . Optimization of the instrument configuration for TanSat CO 2 spectrometer [J]. Chinese Science Bulletin , 2013, 58(27): 2787-2789.

[29] Isaksen I, Berntsen T, Dalsren S, et al . Atmospheric ozone and methane in a changing climate [J]. Atmosphere , 2014, 5(3): 518-535.

[30] Bekki S, Law K S, Pyle J A. Effect of ozone depletion on atmospheric CH 4 and CO concentrations [J]. Nature , 1994, 371(6498): 595-597.

[31] Saunois M, Jackson R B, Bousquet P, et al . The growing role of methane in anthropogenic climate change [J]. Environmental Research Letters , 2016, 11(12): 120207.

[32] Chédin A, Serrar S, Scott N A, et al . First global measurement of midtropospheric CO 2 from NOAA polar satellites: Tropical zone [J]. Journal of Geophysical Research: Atmospheres , 2003, 108(D18): 4581.

[33] Crevoisier C, Heilliette S, Chédin A, et al . Midtropospheric CO 2 concentration retrieval from AIRS observations in the tropics [J]. Geophysical Research Letters , 2004, 31(17): L17106.

[34] Crevoisier C, Chédin A, Matsueda H, et al . First year of upper tropospheric integrated content of CO 2 from IASI hyperspectral infrared observations [J]. Atmospheric Chemistry and Physics , 2009, 9(14): 4797-4810.

[35] Wang J, Feng L, Palmer P I, et al . Large Chinese land carbon sink estimated from atmospheric carbon dioxide data [J]. Nature , 2020, 586(7831): 720-723.

[36] Hong X H, Zhang P, Bi Y M, et al . Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations [J]. IEEE Transactions on Geoscience and Remote Sensing , 2021, 60: 1-16.

[37] Li Q Q. Inversion Algorithm and Software Implementation for Atmospheric CO 2 Satellite Remote Sensing [D]. Hefei: University of Science and Technology of China, 2020.

[38] Ye H H, Wang X H, Wu S C, et al . Atmospheric CO 2 retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5 [J]. Journal of Atmospheric and Environmental Optics , 2021, 16(3): 231-238.

[39] Wu S C, Wang X H, Ye H H, et al . Atmospheric CO 2 cooperative inversion algorithm applied to GF-5 satellite [J]. Acta Optica Sinica , 2021, 41(15): 16-22.

[40] Yang D X, Liu Y, Feng L, et al . The first global carbon dioxide flux map derived from TanSat measurements [J]. Advances in Atmospheric Sciences , 2021, 38(9): 1433-1443.

[41] Liu Y, Wang J, Yao L, et al . The TanSat mission: Preliminary global observations [J]. Science Bulletin , 2018, 63(18): 1200-1207.

[42] Wu L H, Hasekamp O, Hu H L, et al . Full-physics carbon dioxide retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite by only using the 2.06 μ m band [J]. Atmospheric Measurement Techniques , 2019, 12(11): 6049-6058.

[43] Liao X Y, Sun J L, Lu N, et al . Discussion on atmospheric CO 2 retrieval using SCIAMACHY data [J]. Progress in Geophysics , 2012, 27(3): 837-845.

[44] Song C. Retrieval, Simulation and Regional Fluxes Estimation of Greenhouse Gases [D]. Shanghai: East China Normal University, 2015.

[45] Zou M M, Chen L F, Tao J H, et al . CO 2 retrieval and preliminary retrieval results from space-based observations in shortwave infrared band [J]. Journal of Remote Sensing , 2015, 19(1): 46-53.

[46] 张兴赢, 白文广, 张 鹏, 等. 卫星遥感中国对流层中高层大气甲烷的时空分布特征 [J]. 科学通报, 2011, 56(33): 2804-2811.

[47] 白文广, 张兴赢, 张 鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析 [J]. 科学通报, 2010, 55(30): 2953-2960.

[48] Zhang Y, Chen L F, Tao J H, et al . Retrieval of methane profiles from spaceborne hyperspectral infrared observations [J]. Journal of Remote Sensing , 2012, 16(2): 232-247.

[49] Bu T T, Wang X H, Ye H H, et al . Errors analysis and correction in atmospheric methane retrieval based on greenhouse gases observing satellite data [J]. Spectroscopy and Spectral Analysis , 2016, 36(1): 186-190.

[50] Tian H Q, Xu R T, Canadell J G, et al . A comprehensive quantification of global nitrous oxide sources and sinks [J]. Nature , 2020, 586(7828): 248-256.

[51] Thompson R L , Lassaletta L, Patra P K , et al . Acceleration of global N 2 O emissions seen from two decades of atmospheric inversion [J]. Nature Climate Change , 2019, 9(12): 993-998.

[52] Ma P F, Chen L F, Li Q, et al . Simulation of atmospheric nitrous oxide profiles retrieval from AIRS observations [J]. Spectroscopy and Spectral Analysis , 2015, 35(6): 1690-1694.

[53] Wang H, Li X, Xu J, et al . Assessment of retrieved N 2 O, NO 2 , and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra [J]. Sensors , 2018, 18(7): 2209.

[54] Xiong X Z, Maddy E S, Barnet C, et al . Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation [J]. Journal of Geophysical Research: Atmospheres , 2014, 119(14): 9107-9122.

[55] Steffen J, Bernath P F, Boone C D. Trends in halogen-containing molecules measured by the Atmospheric Chemistry Experiment (ACE) satellite [J]. Journal of Quantitative Spectroscopy and Radiative Transfer , 2019, 238: 106619.

[56] Zeng X Y, Wang W, Liu C, et al . Detection of atmosphere CCl 2 F 2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy [J]. Acta Physica Sinica , 2021, 70(20): 9-17.

[57] Le Quéré C, Andrew R M, Canadell J G, et al . Global carbon budget 2016 [J]. Earth System Science Data , 2016, 8: 605-649.

[58] Lamarque J F, Shindell D T, Josse B, et al . The atmospheric chemistry and climate model intercomparison project (ACCMIP): Overview and description of models, simulations and climate diagnostics [J]. Geoscientific Model Development , 2013, 6(1): 179-206.

[59] Patra, P K, Houweling, S, Krol, M, et al . TransCom model simulations of CH 4 and related species: Linking transport, surface flux and chemical loss with CH 4 variability in the troposphere and lower stratosphere [J]. Atmospheric Chemistry and Physics , 2011, 11(24): 12813-12837.

[60] Tian H Q, Yang J, Lu C Q, et al . The global N 2 O model intercomparison project [J]. Bulletin of the American Meteorological Society , 2018, 99(6): 1231-1251.

[61] Nguyen H, Liu J J, Kulawik S, et al . Multi-instrument fused bias-corrected XCO 2 and other select fields aggregated as level 4 daily files V1 (MultiInstrumentFusedXCO2) at GES DISC [DS]. Goddard Earth Sciences Data and Information Services Center (GES DISC). 2022.

[62] Alkhaled A A A A. Remote Sensing of CO 2 : Geostatistical Tools for Assessing Spatial Variability, Quantifying Representation Errors, and Gap-Filling [D]. Michigan: University of Michigan, 2009.

[63] Zeng Z C, Lei L P, Hou S S, et al . A regional gap-filling method based on spatiotemporal variogram model of CO 2 columns [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014, 52(6): 3594-3603.

[64] He W, van der Velde I R , Andrews A E , et al . CTDAS-Lagrange v1.0: A high-resolution data assimilation system for regional carbon dioxide observations [J]. Geoscientific Model Development , 2018, 11(8): 3515-3536.

[65] Jiang F, Wang H, Chen J M, et al . Regional CO 2 fluxes from 2010 to 2015 inferred from GOSAT XCO 2 retrievals using a new version of the global carbon assimilation system [J]. Atmospheric Chemistry and Physics , 2021, 21(3): 1963-1985.

[66] Zeng Z C, Lei L P, Hou S S, et al . A regional gap-filling method based on spatiotemporal variogram model of CO 2 columns [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014, 52(6): 3594-3603.

[67] Tian X, Xie Z, Liu Y, et al . A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO 2 fluxes and 3-D atmospheric CO 2 concentrations from observations [J]. Atmospheric Chemistry and Physics , 2014, 14(23): 13281-13293.

[68] Engelen R J, Serrar S, Chevallier F. Four-dimensional data assimilation of atmospheric CO 2 using AIRS observations [J]. Journal of Geophysical Research: Atmospheres , 2009, 114: D03303.

[69] Zheng T, Nassar R, Baxter M. Estimating power plant CO 2 emission using OCO-2 XCO 2 and high resolution WRF-Chem simulations [J]. Environmental Research Letters , 2019, 14(8): 085001.

[70] Zheng B, Chevallier F, Ciais P, et al . Observing carbon dioxide emissions over China ′ s cities and industrial areas with the Orbiting Carbon Observatory-2 [J]. Atmospheric Chemistry and Physics , 2020, 20(14): 8501-8510.

[71] Kiel M, Eldering A, Roten D D, et al . Urban-focused satellite CO 2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity [J]. Remote Sensing of Environment , 2021, 258: 112314.

[72] Xi X, Natraj V, Shia R L, et al . Simulated retrievals for the remote sensing of CO 2 , CH 4 , CO, and H 2 O from geostationary orbit [J]. Atmospheric Measurement Techniques , 2015, 8(11): 4817-4830.

[73] Polonsky I N, O ′ Brien D M, Kumer J B, et al . Performance of a geostationary mission, geoCARB, to measure CO 2 , CH 4 and CO column-averaged concentrations [J]. Atmospheric Measurement Techniques , 2014, 7(4): 959-981.

[74] Meijer Y J, Ingmann P, Lscher A, et al . CarbonSat: ESA ′ s Earth Explorer 8 Candidate Mission [Z]. 2012. https://www.resea-

[75] Buchwitz M, Reuter M, Bovensmann H, et al . Carbon Monitoring Satellite (CarbonSat): Assessment of atmospheric CO 2 and CH 4 retrieval errors by error parameterization [J]. Atmospheric Measurement Techniques , 2013, 6(12): 3477-3500.

[76] Reuter M, Buchwitz M, Schneising O, et al . Towards monitoring localized CO 2 emissions from space: Co-located regional CO 2 and NO 2 enhancements observed by the OCO-2 and S5P satellites [J]. Atmospheric Chemistry and Physics , 2019, 19(14): 9371-9383.

[77] Zheng B, Ciais P, Chevallier F, et al . Increasing forest fire emissions despite the decline in global burned area [J]. Science Advances , 2021, 7(39): eabh2646.

[78] Pandey S, Gautam R, Houweling S, et al . Satellite observations reveal extreme methane leakage from a natural gas well blowout [J]. Proceedings of the National Academy of Sciences of the United States of America , 2019, 116(52): 26376-26381.

[79] Varon D J, McKeever J, Jervis D, et al . Satellite discovery of anomalously large methane point sources from oil/gas production [J]. Geophysical Research Letters , 2019, 46(22): 13507-13516.

[80] Irakulis-Loitxate I, Guanter L, Liu Y N, et al . Satellite-based survey of extreme methane emissions in the Permian Basin [J]. Science Advances , 2021, 7(27): eabf4507.

[81] Dils B, Buchwitz M, Reuter M, et al . The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO 2 and CH 4 retrieval algorithm products with measurements from the TCCON [J]. Atmospheric Measurement Techniques , 2014, 7(6): 1723-1744.

[82] Buchwitz M, Reuter M, Schneising O, et al . The greenhouse gas project of ESA ′ s climate change initiative (GHG-CCI): Overview, achievements and future plans [J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , 2015, XL-7/W3: 165-172.

杨晓钰, 王中挺, 潘光, 熊伟, 周伟, 张连华, 王兆军, 姜腾龙, 刘建军, 代亚贞, 马鹏飞, 厉青, 赵少华. 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581. YANG Xiaoyu, WANG Zhongting, PAN Guang, XIONG Wei, ZHOU Wei, ZHANG Lianhua, WANG Zhaojun, JIANG Tenglong, LIU Jianjun, DAI Yazhen, MA Pengfei, LI Qing, ZHAO Shaohua. Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 581.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!