光谱学与光谱分析, 2023, 43 (3): 883, 网络出版: 2023-04-07  

上蜡翡翠的荧光光谱特征研究

Study on the Fluorescence Spectral Characteristics of Waxing Jadeite
作者单位
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
摘要
翡翠是目前市场上最常见的玉石之一, 通过上蜡掩盖翡翠表面微小的缺陷, 提高其光泽, 这种加工手段是消费者普遍接受的。 A货翡翠上蜡、 B货和B+C货翡翠以及B货和B+C货翡翠上蜡后在紫外灯下都会有荧光, 如何快速有效地鉴别这些翡翠是目前需要解决的问题。 收集了目前市场上常见的A货, B货, B+C货翡翠和两种优化蜡, 并使用优化蜡对这些翡翠上蜡, 采用紫外荧光灯、 红外光谱仪和荧光光谱仪对上蜡前后的样品进行了系统的对比研究。 结果显示: 在紫外荧光灯下A货翡翠无荧光, B货和B+C货翡翠有弱—中等的荧光, 上蜡后的翡翠均会发出相似程度的荧光。 红外光谱直接透射法显示在官能团区B货和B+C货翡翠中芳香族化合物的芳环上官能团ν(C—H)伸缩振动会产生的3 064, 3 032, 3 003 cm-1吸收峰; 优质蜡由烷烃化合物官能团ν(—CH2—)伸缩振动分别产生2 915和2 846 cm-1吸收峰, 同时还可能存在官能团ν(CO)伸缩振动所致的1 681 cm-1处吸收峰, 而川蜡中只检测到甲基和亚甲基产生的吸收峰。 荧光光谱显示A货翡翠无荧光反应, B货和B+C货翡翠有荧光反应, 部分B+C货翡翠和B货翡翠的图谱相似性很高, 说明荧光是充填物发出的, 染料中的离子会导致荧光峰产生偏移和荧光强度的改变。 根据B+C货翡翠荧光峰位置的不同可以分为三类, 激发波长分别为350, 358和370 nm, 发射波长分别为370, 420和414/434 nm。 两种优化蜡的荧光峰明显不同, 且优质蜡的荧光强度高于川蜡。 上蜡后A货翡翠会出现优化蜡的荧光峰, 荧光强度和翡翠表面蜡浓度有关。 B货和B+C货翡翠上蜡后同样会出现优化蜡的荧光峰, 不过由于优化蜡的浓度较低, 最强的荧光峰都是翡翠中充填物发出的, 且相比于上蜡前, 荧光峰会有红移。 荧光光谱可以作为一种快速无损的检测手段区分上蜡前后的A货, B货和B+C货翡翠, 对上蜡后的A货翡翠与B货或B+C货翡翠也可以有效区分, 完善了荧光光谱仪在翡翠市场可以广泛应用的依据。
Abstract
Jadeite is one of the most common jades in the current market, and the processing means to cover up the tiny defects on the surface of jadeite and improve its luster by waxing is commonly accepted by consumers. The waxing of A jadeite, B and B+C jadeite and B and B+C jadeite will fluoresce under a UV lamp after waxing, and how to identify these jadeites quickly and effectively is a problem that needs to be solved now. The common A, B, B+C jadeite and two kinds of optimized waxes in the current market were collected, and the optimized waxes were used to wax this jadeite, and the samples before and after waxing were systematically compared and studied by using a UV fluorescent lamp, and infrared spectrometer and fluorescence spectrometer. The results showed that the A jadeite did not fluoresce under UV fluorescent light, the B and B+C jadeite had weak-medium fluorescence, and all the jadeites emitted similar fluorescence after waxing. Infrared spectroscopy direct transmission method showed that the absorption peaks of 3 064, 3 032, 3 003 cm-1 were generated by the stretching vibration of the functional group ν(C—H) on the aromatic ring of the aromatic compounds in the functional group area of B and B+C jadeite; the high-quality waxes were generated by the stretching vibration of the functional group ν(—CH2—) of the alkane compounds absorption peaks at 2 915, 2 846 cm-1 and possibly 1 681 cm-1 due to the stretching vibration of the functional group ν(CO),respectively. In contrast, only absorption peaks from methyl and methylene groups were detected in Chuan wax. The fluorescence spectra showed no fluorescence response for A jadeite and fluorescence response for B and B+C jadeite. The high similarity of the profiles of some B+C jadeite and B jadeite indicates that the filling emits the fluorescence, and the ions in the dyes cause the fluorescence peaks to be shifted and the fluorescence intensity to change. According to the B+C, jadeite fluorescence peak position can be divided into three categories, excitation wavelengths were 350, 358, 370 nm, and emission wavelengths were 370, 420, 414/434 nm. Two optimized wax fluorescence peak is different, and the quality of wax fluorescence intensity is higher than Chuan wax. After waxing, the fluorescence peak of A jadeite will appear. The fluorescence intensity is related to the concentration of wax on the surface of jadeite, B and B+C jadeite will also appear after waxing, the fluorescence peak of optimized wax, but because the concentration of optimized wax is low, the strongest fluorescence peak is issued by the filling of jadeite and compared to the wax before, the fluorescence peak has redshift. Fluorescence spectroscopy can be used as a fast and non-destructive detection means to distinguish A, B and B+C jadeite before and after waxing, and the A jadeite and B or B+C jadeite after waxing can also be effectively distinguished, perfecting the basis on which fluorescence spectroscopy can be widely used in the jadeite market.
参考文献

[1] PANG Tao-tao, DENG Fan, LIN Jin-fu(庞陶陶, 邓 凡, 林锦富). Superhard Material Engineering(超硬材料工程), 2015, 27(4): 53.

[2] OUYANG Qiu-mei, YAN Jun(欧阳秋眉, 严 军). Qiumei Jadeite: Practical Jadeite Science(秋眉翡翠: 实用翡翠学). Shanghai: Xuelin Publishing House(上海: 学林出版社), 2005. 236.

[3] XU Jin-gou, WANG Zun-ben(许金钩, 王尊本). Fluorophotometric Analysis(荧光分析法). Beijing: Science Press(北京: 科学出版社), 2006.

[4] QI Li-jian, YUAN Xin-qiang, PENG Guo-zhen, et al(亓利剑, 袁心强, 彭国桢, 等). Journal of Gems & Gemmology(宝石和宝石学杂志), 2005, 7(3): 1.

[5] GB/T 16552—2017. National Standard of the People’s Republic of China(中华人民共和国国家标准). Gems—Nomenclature(珠宝玉石名称).

[6] WENG Shi-fu, XU Yi-zhuang(翁诗甫, 徐怡庄). Fourier Transform Infrared Spectrum Analysis(傅里叶变换红外光谱分析). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2016. 4.

[7] MA Ping, SHEN Xi-tian, SHAO Tian, et al(马 平, 沈锡田, 邵 天, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(3): 961.

李浩东, 李举子, 陈彦霖, 黄钰静. 上蜡翡翠的荧光光谱特征研究[J]. 光谱学与光谱分析, 2023, 43(3): 883. LI Hao-dong, LI Ju-zi, CHEN Yan-lin, HUANG Yu-jing. Study on the Fluorescence Spectral Characteristics of Waxing Jadeite[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 883.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!