人工晶体学报, 2023, 52 (11): 2041, 网络出版: 2023-12-05  

Eu(Ⅲ)功能化金属-有机框架的合成及其对1-萘酚的荧光传感

Synthesis of Eu(Ⅲ) Functionalized Metal-Organic Framework and Fluorescence Sensing for 1-Naphthol
作者单位
齐齐哈尔医学院药学院, 齐齐哈尔 161006
摘要
采用溶剂热合成方法, 合成了一例金属-有机框架{[Zn2(OH)(TZI)·2H2O]·6DMF}n (1)(TZI为5-四氮唑间苯二甲酸), 并利用单晶X射线衍射、元素分析、红外光谱、热重分析、粉末X射线衍射等手段对化合物进行了结构表征。单晶X射线衍射结果显示配合物1呈现出三维孔道结构, 并且孔道中存在未配位的羧基和配位的水分子。随后通过后合成法将Eu(Ⅲ)离子引入到框架中得到具有红光发射特征的Eu(Ⅲ)@1。在275 nm的激发光下, Eu(Ⅲ)@1存在两组荧光发射, 第一组在418 nm处的宽峰为配合物1的荧光发射, 荧光源于有机配体的吸收和发射; 第二组五个发射峰为Eu(Ⅲ)离子的红色特征发射峰, 其主峰为619 nm。尿液中其他成分抗干扰性实验结果表明, Eu(Ⅲ)@1荧光探针对于生物标记物1-萘酚非常敏感, 能够导致红色荧光猝灭(619 nm), 并伴有青色荧光增强(465 nm), 对1-萘酚具有高选择性。荧光滴定实验结果显示Eu(Ⅲ)@1基于465和619 nm处荧光发射峰对1-萘酚的检测限分别为6.95 μmol/L和1.75 mmol/L。
Abstract
A metal-organic framework complex {[Zn2(OH)(TZI)·2H2O]·6DMF}n (1) (TZI=5-tetrazolylisophthalic acid) was successfully isolated under solvothermal conditions. The structure of the complex was characterized by single crystal X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction. Single crystal X-ray diffraction study reveals that 1 displays a 3D structure with channels, where exist uncoordinated carboxylate groups and coordinated water molecules. Subsequently, through post-synthesis method, a Eu(Ⅲ)@1 with red fluorescence emission was obtained by introducing Eu(Ⅲ) into framework of 1. Under 275 nm wavelength excitation, Eu(Ⅲ)@1 possesses two groups of fluorescence emission. In the first group, the wide peak at 418 nm is the fluorescence emission of 1, which origins from the absorption and emission of the organic ligand. While, the second group of five emission peaks is the red characteristic emission peak of Eu(Ⅲ) ion, with main peak of 619 nm. The results of anti-interference experiments of other components in urine show that Eu(Ⅲ)@1 fluorescent probe is very sensitive to the biomarker 1-naphthol, and can lead to red fluorescence quenching (619 nm), accompanies by cyan fluorescence enhancement (465 nm), and has high selectivity for 1-naphthol. Fluorescence titration results show that the detection limits of Eu(Ⅲ)@1 for 1-naphthol based on fluorescence emission peaks at 465 and 619 nm are 6.95 μmol/L and 1.75 mmol/L, respectively.
参考文献

[1] LIU D B, CHEN W W, WEI J H, et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides[J]. Analytical Chemistry, 2012, 84(9): 4185-4191.

[2] SHEALY D B, BARR J R, ASHLEY D L, et al. Correlation of environmental carbaryl measurements with serum and urinary 1-naphthol measurements in a farmer applicator and his family[J]. Environmental Health Perspectives, 1997, 105(5): 510-513.

[3] ABAD A, MORENO M J, PELEGR R, et al. Determination of carbaryl, carbofuran and methiocarb in cucumbers and strawberries by monoclonal enzyme immunoassays and high-performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography A, 1999, 833(1): 3-12.

[4] ISHIZAKI A, SAITO K, HANIOKA N, et al. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection[J]. Journal of Chromatography A, 2010, 1217(35): 5555-5563.

[5] STOCK N, BISWAS S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112(2): 933-969.

[6] 刘 朋, 陈洪霞. 两例相同混合配体构筑的Pb(Ⅱ)/Ag(Ⅰ)配位聚合物及其荧光性质[J]. 人工晶体学报, 2021, 50(8): 1444-1451.

[7] 梁姗姗, 张 慧, 郭京京, 等. 双联咪唑和对苯二甲酸构筑的二重穿插锌(Ⅱ)配位聚合物[Zn(bbi)(tpa)]n的合成及其荧光性能[J]. 合成化学, 2016, 24(5): 384-388.

[8] CANDU N, TUDORACHE M, FLOREA M, et al. Postsynthetic modification of a metal-organic framework (MOF) structure for enantioselective catalytic epoxidation[J]. ChemPlusChem, 2013, 78(5): 443-450.

[9] DUMMERT S V, SAINI H, HUSSAIN M Z, et al. Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications[J]. Chemical Society Reviews, 2022, 51(12): 5175-5213.

[10] DE D, SAHOO P. The impact of MOFs in pH-dependent drug delivery systems: progress in the last decade[J]. Dalton Transactions, 2022, 51(26): 9950-9965.

[11] ZHAO J J, LIU P Y, DONG Z P, et al. Eu(Ⅲ)-organic framework as a multi-responsive photoluminescence sensor for efficient detection of 1-naphthol, Fe3+ and MnO-4 in water[J]. Inorganica Chimica Acta, 2020, 511: 119843.

[12] QIN S J, YAN B. A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine[J]. Sensors and Actuators B: Chemical, 2018, 259: 125-132.

[13] ZHAO J, WANG Y N, DONG W W, et al. A robust luminescent Tb(Ⅲ)-MOF with lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules[J]. Inorganic Chemistry, 2016, 55(7): 3265-3271.

[14] ZHAO J, LIU X, WU Y P, et al. Surfactants as promising media in the field of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 391: 30-43.

[15] HU Z C, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43(16): 5815-5840.

[16] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.

[17] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C, Structural Chemistry, 2015, 71(1): 3-8.

[18] LU Y, YAN B. A ratiometric fluorescent pH sensor based on nanoscale metal-organic frameworks (MOFs) modified by europium(iii) complexes[J]. Chemical Communications, 2014, 50(87): 13323-13326.

[19] HAO J N, YAN B. Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as a biological index of toluene exposure[J]. Chemical Communications, 2015, 51(77): 14509-14512.

[20] XU X Y, YAN B. Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor[J]. Journal of Materials Chemistry C, 2016, 4(36): 8514-8521.

[21] TIAN D, LI Y, CHEN R Y, et al. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives[J]. Journal of Materials Chemistry A, 2014, 2(5): 1465-1470.

[22] LIANG Z C, KANG M, PAYNE G F, et al. Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17478-17488.

[23] HAO J N, YAN B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor[J]. Advanced Functional Materials, 2017, 27(6): 1603856.

梁佳丽, 胡冰, 李润雨, 刘力榕, 姜林金, 孙靖文. Eu(Ⅲ)功能化金属-有机框架的合成及其对1-萘酚的荧光传感[J]. 人工晶体学报, 2023, 52(11): 2041. LIANG Jiali, HU Bing, LI Runyu, LIU Lirong, JIANG Linjin, SUN Jingwen. Synthesis of Eu(Ⅲ) Functionalized Metal-Organic Framework and Fluorescence Sensing for 1-Naphthol[J]. Journal of Synthetic Crystals, 2023, 52(11): 2041.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!