红外与激光工程, 2019, 48 (3): 0330003, 网络出版: 2019-04-06   

基于共面约束的多线激光雷达相对位置关系检校

Relative position calibration of multibeam LIDAR based on coplanar constraints
作者单位
1 武汉大学 遥感信息工程学院, 湖北 武汉 430079
2 立得空间信息技术股份有限公司, 湖北 武汉 430079
摘要
多线激光雷达具有成本低、体积小、能直接获取场景地物表面的三维点云数据等优点, 已被广泛应用在无人驾驶、移动测量、机器人等领域。为减少遮挡, 提高点云密度, 两个或多个激光雷达常被集成在一起, 互为补充。不同激光雷达的安装位置和姿态不同, 要融合激光雷达的点云数据, 关键在于对激光雷达之间相对位置关系的检校。为检校激光雷达之间的相互位置关系, 提出了基于共面约束的检校算法。算法要求不同的激光雷达同时扫到相同的平面, 利用平面在不同坐标系下的对应关系求解激光雷达之间的相互位置关系, 并结合Levenberg-Marquardt (L-M)优化算法, 提高检校精度。该算法操作简单、通用性强、检校精度高。
Abstract
Multibeam LIDAR has been widely applied in the fields of unmanned ground vehicle, mobile measurement and robots because of its low cost, small size and capability of acquiring 3-dimensional distance of objects in the scene. To reduce occlusion and improve the density and coverage of point cloud, two or more LIDAR devices are integrated together to complement each other. As the installation position and attitude of the LIDAR are different, relative position calibration is a key step before fusing different laser data. In order to calibrate the relative spatial position relationship, a method based on coplanar constraints was proposed. Different LIDARs captured the range data of the same plane simultaneously. Although the range data had different coordinate systems, they represented the same plane. Relative positions between LIADR were initially obtained by fitting the common plane of multiple range data of different coordinate systems, and then optimized by L-M algorithm to enhance the calibration accuracy. This method is simple, accurate, and suitable for most LIDAR configurations in practical applications.
参考文献

[1] Ye Y, Fu L, Li B. Object detection and tracking using multi-layer laser for autonomous urban driving[C]// International Conference on Intelligent Transportation Systems. IEEE, 2016: 259-264.

[2] Droeschel D, Schwarz M, Behnke S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner[J]. Robotics & Autonomous Systems, 2017, 88: 104-115.

[3] 张毅, 杜凡宇, 罗元, 等. 一种融合激光和深度视觉传感器的SLAM地图创建方法[J]. 计算机应用研究, 2016, 33(10): 2970-2972.

    Zhang Yi, Du Fanyu, Luo Yuan, et al. Map-building approach based on laser and depth visual sensor fusion SLAM[J]. Application Research of Computers, 2016, 33(10): 2970-2972. (in Chinese)

[4] Lenac K, Kitanov A, Cupec R, et al. Fast planar surface 3D SLAM using LIDAR[J]. Robotics & Autonomous Systems, 2017, 92: 197-220.

[5] Alismail H, Browning B. Automatic calibration of spinning actuated lidar internal parameters[J]. Journal of Field Robotics, 2015, 32(5): 723-747.

[6] 杜亮, 张铁, 戴孝亮. 激光跟踪仪测量距离误差的机器人运动学参数补偿[J]. 红外与激光工程, 2015, 44(8): 2351-2357.

    Du Liang, Zhang Tie, Dai Xiaoliang. Robot kinematic parameters compensation by measuring distance error using laser tracker system[J]. Infrared and Laser Engineering, 2015, 44(8): 2351-2357. (in Chinese)

[7] Bogue R. Sensors for robotic perception. Part two: positional and environmental awareness[J]. Industrial Robot, 2015, 42(6): 502-507.

[8] 刘家银, 唐振民, 王安东, 等. 基于多线激光雷达与组合特征的非结构化环境负障碍物检测[J]. 机器人, 2017, 39(5): 638-651.

    Liu Jiayin, Tang Zhenmin, Wang Andong, et al. Negative obstacle detection in unstructured environment based on multiple LiDARs and compositional features[J]. Robot, 2017, 39(5): 638-651. (in Chinese)

[9] 郑瀚. 地面三维激光扫描检校测量[J]. 黑龙江科技信息, 2015(16): 61-62.

    Zheng Han. The measurement calibration of terrestrial 3D laser scanning[J]. Heilongjiang Science and Technology Information, 2015(16): 61-62. (in Chinese)

[10] 褚智慧, 段昌龙. 车载三维激光扫描系统外参数标定研究[J]. 北京测绘, 2016(2): 55-58.

    Chu Zhihui, Duan Changlong. Research of calibrating vechicle laser scanner′s external parameters[J]. Beijing Surveying and Mapping, 2016(2): 55-58. (in Chinese)

[11] Zhang Q, Pless R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005(3): 2301-2306.

[12] Zhou L, Deng Z. A new algorithm for computing the projection matrix between a LIDAR and a camera based on line correspondences[C]//International Congress on Ultra Modern Telecommunications and Control Systems and Workshops. IEEE, 2012: 436-441.

[13] Fernández-Moral E, González-Jiménez J, Arevalo V. Extrinsic calibration of 2D laser rangefinders from perpen-dicular plane observations[J]. International Journal of Robotics Research, 2015, 34(11): 1401-1417.

[14] 田祥瑞, 徐立军, 徐腾, 等. 车载LiDAR扫描系统安置误差角检校[J]. 红外与激光工程, 2014, 43(10): 3292-3297.

    Tian Xiangrui, Xu Lijun, Xu Teng, et al. Calibration of installation angles for mobile LiDAR scanner system[J]. Infrared and Laser Engineering, 2014, 43(10): 3292-3297. (in Chinese)

[15] Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly Applied Math, 1944, 2(4): 436-438.

[16] 杨军建, 吴良才. 基于RANSAC算法的稳健点云平面拟合方法[J]. 北京测绘, 2016(2): 73-75.

    Yang Junjian, Wu Liangcai. A robust point cloud plane fitting method based on RANSAC algorithm[J]. Beijing Surveying and Mapping, 2016(2): 73-75. (in Chinese)

[17] 李希, 韩燮, 熊风光. 基于RANSAC和TLS的点云平面拟合[J]. 计算机工程与设计, 2017, 38(1): 123-126.

    Li Xi, Han Xie, Xiong Fengguang. Plane fitting of point clouds based on RANSAC and TLS[J]. Computer Engineering and Design, 2017, 38(1): 123-126. (in Chinese)

[18] Peter H Sch 觟nemann. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1): 1-10.

张顺, 黄玉春, 张文俊. 基于共面约束的多线激光雷达相对位置关系检校[J]. 红外与激光工程, 2019, 48(3): 0330003. Zhang Shun, Huang Yuchun, Zhang Wenjun. Relative position calibration of multibeam LIDAR based on coplanar constraints[J]. Infrared and Laser Engineering, 2019, 48(3): 0330003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!