无机材料学报, 2021, 36 (5): 507, 网络出版: 2021-11-25  

CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂

CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst
作者单位
上海应用技术大学 材料科学与工程学院, 上海 201418
摘要
CsPbBr3钙钛矿量子点在水中的不稳定性一直是限制其应用的关键因素。本工作采用钛酸四丁酯水解结合煅烧的方法在CsPbBr3表面包覆TiO2保护层, 制备了一种具有良好水稳定性和光催化活性的CsPbBr3@TiO2核壳结构纳米复合材料。所合成的CsPbBr3钙钛矿量子点尺寸约为8 nm, 包覆层为不完全结晶的TiO2, 其厚度约为20 nm。采用在可见光下降解水中有机污染物罗丹明B表征了CsPbBr3@TiO2复合材料的光催化性能。结果表明, CsPbBr3@TiO2复合材料的光催化性能远优于纯TiO2和CsPbBr3钙钛矿量子点。光电流测试结果表明, CsPbBr3和TiO2形成的异质结构能够促进光生载流子的分离, 从而提升CsPbBr3@TiO2复合材料光催化性能。更重要的是, TiO2可以作为CsPbBr3的保护层将CsPbBr3和水分隔开来, 使得CsPbBr3@TiO2复合材料具有很好的水稳定性。经过光催化降解污染物之后, 回收的CsPbBr3@TiO2复合材料的形貌、发光和光催化性能保持不变。
Abstract
The inherent poor stability of CsPbBr3 perovskite quantum dots (QDs) is the main impediment restricting their applications. In this work, a CsPbBr3@TiO2 core-shell structure nanocomposite with high water stability and efficient photocatalytic activity was fabricated through the hydrolysis of tetrabutyl titanate, followed by calcination. The as-prepared CsPbBr3 QDs have a size of ca. 8 nm, encapsulated by incompletely crystallized TiO2 protective layer with a thickness of ca. 20 nm. The photocatalytic performance of the CsPbBr3@TiO2 nanocomposite was investigated by degradation of Rhodamine B (RhB) in water under visible light irradiation. The result shows that the CsPbBr3@TiO2 nanocomposite exhibits much more enhanced photocatalytic activity than pure TiO2 and CsPbBr3 perovskite quantum dots. The photocurrent test results showed that the formation of the CsPbBr3@TiO2 heterostructure can promote the separation of photogenerated carriers, which led to the improvement of photocatalytic performance of the composite material. More importantly, TiO2 can act as a protective layer to separate CsPbBr3 from water, which brings about the high water stability of the CsPbBr3@TiO2 nanocomposite. After photocatalytic degradation of pollutants, the recovered CsPbBr3@TiO2 nanocomposite retained its original morphology, luminescent and photocatalytic properties.

全无机钙钛矿量子点CsPbX3 (X=Cl, Br, I)具有吸收系数高、发光效率高、发光在整个可见光范围内可调和发射谱线窄等优异性能, 引起了广泛关注。作为新型发光材料, 钙钛矿量子点在发光二极管、太阳能电池、光探测和激光等领域具有广阔的应用前景, 是近年来光电材料的研究热点[1,2,3,4]。然而, 它的离子结构特殊, 造成其稳定性很差, 从而限制了实际应用。其中, 水和氧气是影响钙钛矿量子点环境稳定性的关键因素。当这类材料暴露在空气中时, 与水和氧气的接触会使其发生快速分解而破坏离子结构。 因此, 稳定性问题限制了该材料在水相中的应用, 如光催化、光电催化以及生物检测等[5,6,7]。因此, 开发具有水稳定性的钙钛矿量子点, 对于进一步拓展全无机钙钛矿量子点在水环境中的应用具有十分重要的意义。

近年来, 研究者采取了大量措施来解决CsPbX3钙钛矿量子点的稳定性问题, 包括引入防水配位基进行表面钝化、掺杂其他离子以及采用无机或者有机保护层进行包覆等[8,9,10,11,12]。表面钝化和离子掺杂虽然可以在一定程度上提高CsPbX3钙钛矿量子点的稳定性, 但是这两种方法都有其局限性, 例如, 配位基在CsPbX3表面和溶液之间存在动态配体交换过程, 在高湿度、极性溶剂或者高温条件下会严重破坏CsPbX3的结构; 而离子掺杂并没有改变CsPbX3的初始晶体结构, 致使其稳定性提高有限。与前两种方法不同, 包覆是在CsPbX3的表面引入具有较高机械强度和不透气的有机或者无机化合物保护层。这些保护层通过包覆CsPbX3钙钛矿量子点, 有效防止CsPbX3与水、氧气等接触。并且包覆还可以防止CsPbX3钙钛矿量子点在溶液中的团聚, 使其保持稳定性。因此, 包覆是提高CsPbX3钙钛矿量子点稳定性最有效和最直接的方法。

迄今为止, 大量材料被用做CsPbX3钙钛矿量子点的包覆材料, 包括无机氧化物材料(如SiO2[13]、Al2O3[14]、SnO2[15]等)和有机高分子材料(如环氧树脂[16]、聚苯乙烯[17]、聚甲基丙烯酸甲酯[17]、聚偏氟乙烯[18]等)。用这些材料对CsPbX3钙钛矿量子点进行包覆, 大幅度提高了CsPbX3钙钛矿量子点的湿度与空气稳定性。但是由于包覆所使用的有机或者无机包覆层均为不导电的绝缘材料, 导致包覆以后的材料电荷传输性能下降, 不利于其在光电或者催化领域的实际应用。因此, 急需开发出兼具高稳定性和高电荷传输特性的钙钛矿量子点材料, 以实现其在光电及相关领域的应用。

Li等[19]采用TiO2对CsPbBr3钙钛矿量子点进行包覆, 大幅提升了CsPbBr3在水中的稳定性, 并利用TiO2壳层的导电性提升了CsPbBr3/TiO2复合材料的电荷分离效率。在此基础上, 为了拓展CsPbBr3钙钛矿量子点在液相光催化领域的应用, 本工作制备了CsPbBr3@TiO2核壳结构纳米复合材料, 并研究了该材料降解水中有机污染物罗丹明B的光催化性能和稳定性。

1 实验方法

1.1 实验试剂

碳酸铯(Cs2CO3, 99.9%), 油酸(C18H34O2, >90%); 十八烯(C18H36, >90%), 油胺(C8H19N, >90%), 溴化铅(PbBr2, 99.999%), 丙酮(CH3COCH3, 99.5%), 甲苯(C7H8, 99.5%), 钛酸四丁酯(C16H36O4Ti, 99%)。以上化学试剂均购于上海泰坦集团。

1.2 材料的制备

1.2.1 CsPbBr3钙钛矿量子点的制备

参考文献[20]的制备方法, 采用热注入法合成CsPbBr3量子点。在氩气环境中, 将0.8 g Cs2CO3, 2.5 mL油酸和30 mL十八烯的混合物放入100 mL的四颈烧瓶中脱气, 在130 ℃下保温1 h。然后将反应温度升至150 ℃再保温0.5 h, 直到所有的Cs2CO3与油酸反应, 经自然冷却至室温后, 得到Cs前驱体。将十八烯(10 mL), 油酸(1 mL)、油胺(1 mL)和溴化铅(0.36 mmol)混合, 在130 ℃氩气气氛中脱气1 h。等到溴化铅完全溶解之后, 将温度升至160 ℃再保温10 min。然后将1 mL Cs前驱体迅速注入上述热混合物中, 并在5 s后用冰浴停止反应, 得到CsPbBr3钙钛矿量子点。通过添加过量丙酮使CsPbBr3纳米晶沉淀, 并进行离心分离, 用甲苯和丙酮的混合溶液洗涤产物。最后, 将产物分散在甲苯中以供进一步使用。

1.2.2 CsPbBr3@TiO2复合材料的制备

参考文献[19]方法制备CsPbBr3@TiO2复合材料。将20 μL钛酸四丁酯溶解在1 mL甲苯中, 在磁力搅拌下, 再将其滴加至10 mL浓度为 1 mg/mL的CsPbBr3量子点的甲苯溶液中。在温度为25 ℃, 湿度为30%的手套袋中搅拌3 h, 离心分离得到产物, 并在80 ℃下真空干燥12 h。将所得的粉末放入管式炉中, 在氩气保护气氛下升温至300 ℃并煅烧5 h。自然冷却至室温, 得到TiO2包覆CsPbBr3钙钛矿量子点材料。

1.3 材料的表征

采用X 射线衍射仪(XRD, D/max 2200PC, 铜靶电压40 kV, 电流40 mA)测试样品的物相。采用透射电子显微镜(TEM, FEI tecnaiG2F30, 200 kV)表征样品的显微结构。采用X射线光电子能谱仪(XPS, ESCALAB 250Xi)对样品进行成分标定及元素化学状态分析。采用傅里叶变换红外光谱仪(FT-IR, Nicolet iN10)研究材料的分子结构和化学键。采用电化学工作站(CHI 650E, 上海辰华)测试样品的光电流。采用三电极系统测试光电流, 以涂敷样品的FTO玻璃做工作电极, 饱和甘汞电极做参比电极, 铂丝做对电极。电解质为0.1 mol/L的Na2SO4溶液, 光源为500 W的氙灯。

1.4 材料的光催化性能表征

称量0.05 g的催化剂, 将其超声分散于50 mL罗丹明B 溶液(10-5 mol/L)中, 得到的悬浮液在避光条件下搅拌0.5 h以达到吸附平衡, 然后将其置于500 W氙灯(采用420 nm滤波片滤去紫外光)下进行可见光照射。每隔10 min取样一次, 对所取溶液离心分离后, 用紫外-可见分光光度计(PE Lambda 900)测试罗丹明B 溶液在最大吸收波长552 nm 处的吸光度。

2 结果与讨论

2.1 XRD分析

图1为CsPbBr3钙钛矿量子点、TiO2和CsPbBr3@TiO2复合材料的XRD图谱。由图可知, CsPbBr3钙钛矿量子点在2θ=15.2°, 21.5°, 26.3°, 30.7°, 34.5°, 37.6°和43.7°处均出现了明显的特征峰, 分别对应CsPbBr3量子点的(100), (110), (111), (200), (210), (211)和(202)晶面。所有的XRD特征峰对应单斜相CsPbBr3的标准卡(JCPDS 18-0364), 说明制备的CsPbBr3量子点具有单斜相结构。相比于纯CsPbBr3钙钛矿量子点, CsPbBr3@TiO2复合材料的XRD图谱没有明显的变化, 只是在2θ=25.1°处出现了锐钛矿相TiO2的最强衍射峰, 说明在包覆过程中CsPbBr3钙钛矿量子点的相结构没有遭到破坏。另一方面, TiO2只检测到2θ=25.1°处的最强衍射峰, 可能是由于TiO2结晶不完全, 含有非晶态的TiO2

图 1. CsPbBr3、TiO2和CsPbBr3@TiO2的XRD图谱

Fig. 1. XRD patterns of CsPbBr3, TiO2 and CsPbBr3@TiO2

下载图片 查看所有图片

2.2 TEM分析

图2(a,b)分别为CsPbBr3和CsPbBr3@TiO2的TEM照片。由图2(a)可知, 合成的CsPbBr3钙钛矿量子点呈立方体形状, 尺寸集中在8 nm左右, 分布均匀, 表现出良好的单分散性。图2(b)中的黑色阴影部分为内层CsPbBr3量子点, 黑色区域周围的灰色阴影区域为TiO2壳层, 表明CsPbBr3钙钛矿量子点被TiO2壳层包覆, 形成了CsPbBr3@TiO2核壳结构纳米复合材料。图2(c)为CsPbBr3@TiO2复合材料的高分辨TEM照片, 其中0.344 nm的晶面间距对应于锐钛矿相TiO2的(101)晶面, 说明TiO2包覆层为锐钛矿相。

图 2. CsPbBr3(a)和CsPbBr3@TiO2(b)的TEM照片; (c)CsPbBr3@TiO2的高分辨TEM照片

Fig. 2. TEM images of CsPbBr3 (a) and CsPbBr3@TiO2 (b), and (c) HRTEM image of CsPbBr3@TiO2

下载图片 查看所有图片

2.3 傅里叶变换红外光谱分析

图3是CsPbBr3钙钛矿量子点、TiO2和CsPbBr3@TiO2复合材料的傅里叶变换红外光谱图, 可以看出, 样品在3443.0 cm-1处都表现出明显的吸收信号, 对应于表面羟基的伸缩振动模式。CsPbBr3钙钛矿量子点在2922.0和2857.3 cm-1处有两个吸收峰, 归属于-CH3的反对称拉伸模式。CsPbBr3@TiO2 复合材料的红外光谱中, 1637.6和1393.7 cm-1处的吸收峰来自于表面羟基的伸缩振动, 1113.6和620.5 cm-1处的吸收峰则来自于Ti-O键的不对称振动模式[21,22]。另外, 可以看出CsPbBr3@TiO2复合材料和纯TiO2的红外光谱基本一致, 说明TiO2包覆在CsPbBr3钙钛矿量子点的外面, 导致无法探测到内层CsPbBr3钙钛矿量子点的吸收峰。

图 3. CsPbBr3、TiO2和CsPbBr3@TiO2的傅里叶变换红外光谱

Fig. 3. FT-IR spectra of CsPbBr3, TiO2 and CsPbBr3@TiO2

下载图片 查看所有图片

2.4 XPS分析

采用XPS分析CsPbBr3@TiO2复合材料的表面化学组成及元素化合价态。图4(a)为CsPbBr3@TiO2复合材料的XPS全谱图, 从图中可以观察到Cs3d、Pb4f、Br3d、Ti2p、O1s和C1s的特征峰, 表明CsPbBr3@TiO2复合材料中含有Cs、Pb、Br、Ti和O等元素。图4(b,c)分别为Ti2p和O1s的高分

辨分峰拟合谱, 从图4(b)中可以看出, Ti2p由两个峰组成, 其中458.3和464.3 eV处的特征峰分别对应于Ti2p3/2和Ti2p1/2的峰; 从图4(c)中可以看出, O1s可以被拟合成两个峰, 其中529.7和531.1 eV的特征峰分别对应于Ti-O和O-H两种结合状态[23]。XPS的测试结果进一步证实所得的复合材料由CsPbBr3钙钛矿量子点和TiO2两种材料组成。

图 4. (a)CsPbBr3@TiO2的XPS全谱图; (b)Ti2p和(c)O1s的XPS 高分辨分峰拟合谱

Fig. 4. Survey XPS spectrum of CsPbBr3@TiO2 (a), and high resolution XPS spectra of Ti2p (b) and O1s (c)

下载图片 查看所有图片

2.5 光催化性能表征

通过在可见光下降解模拟污染物罗丹明B表征CsPbBr3@TiO2复合材料的光催化性能, 结果如图5(a)所示, 可以看出, CsPbBr3@TiO2复合材料作为光催化剂的条件下, 随着光照时间的延长, 罗丹明B逐渐被降解, 光照60 min时降解完全。而在单CsPbBr3或TiO2的作用下, 罗丹明B几乎没有降解。这是因为TiO2在可见光下没有响应, 导致其可见光催化性能较差。而CsPbBr3钙钛矿量子点由于在水中结构不稳定, 导致其在水中很快发生分解而失去光催化活性。而在包覆TiO2之后, TiO2可以作为保护层将CsPbBr3和水分隔开来, 从而防止CsPbBr3分解。从图5(b)可以看出, 经过光催化降解实验之后, 回收的CsPbBr3@TiO2复合材料保持了原有的核壳结构, 说明包覆TiO2确实能够保持CsPbBr3钙钛矿量子点在水中的结构稳定性。为了进一步证实CsPbBr3@TiO2复合材料在水中的稳定性, 对光催化降解实验前后材料的PL谱进行了测试, 结果如图5(c)所示, CsPbBr3@TiO2复合材料的PL谱在光催化降解实验前后没有明显的变化。除此之外, 循环实验表明, 经过三次循环测试, CsPbBr3@TiO2复合材料降解罗丹明B的光催化性能没有明显的下降(图5(d)), 证明该材料具有较高的水稳定性。

图 5. (a) CsPbBr3、TiO2和CsPbBr3@TiO2 在可见光下降解罗丹明B的光催化性能比较; (b)降解实验后回收的CsPbBr3@TiO2复合材料的TEM照片; (c)降解实验前后CsPbBr3@TiO2的PL光谱对比图; (d) CsPbBr3@TiO2降解罗丹明B的循环实验

Fig. 5. (a) Comparison of photocatalytic activities of CsPbBr3, TiO2 and CsPbBr3@TiO2 for degradation of Rhodamine B under visible light irradiation; (b) TEM image of recycled CsPbBr3@TiO2 after the degradation experiment; (c) Comparison of PL spectra of CsPbBr3@TiO2 before and after the degradation experiment; (d) Cycle runs of the photocatalytic degradation of RhB over CsPbBr3@TiO2

下载图片 查看所有图片

2.6 光催化反应机理

光电流可以直接反映光催化剂的载流子分离效率, 而载流子的分离效率和材料的光催化性能密切相关[24]。为了研究CsPbBr3@TiO2复合材料的光催化性能提升机理, 测试了样品的光电流, 结果如图6(a)所示。可以看出, 包覆TiO2之后, CsPbBr3钙钛矿量子点的光电流有了大幅提升, 分别为纯CsPbBr3钙钛矿量子点和TiO2的6倍和1.5倍左右, 说明CsPbBr3钙钛矿量子点与TiO2复合能够有效提升材料的载流子分离效率。在实际光催化的过程中, 载流子的分离效率是影响光催化性能的关键因素, 它直接影响光催化剂的最终效率, 而构建异质结可以有效提高载流子的分离效率。在各种形式的异质结中, II型异质结和直接型Z-scheme是两种最典型的提高载流子分离效率的方式[25,26]。II型异质结和直接型Z-scheme都是由两种半导体材料组成, 其中II型异质结由于两种半导体材料的能级位错可以促进光生载流子在界面间的电荷转移, 从而有利于载流子的分离。根据文献可知, CsPbBr3钙钛矿量子点的价带和导带位置分别为1.5和-1.0 eV[27], 而TiO2的价带和导带位置分别为2.7和-0.5 eV [28]。因此, CsPbBr3钙钛矿量子点的导带位置高于TiO2, 而其价带位置也在TiO2的价带位置之上。两者的能级交错形成II型异质结。在可见光的激发下, 钙钛矿量子点产生的光生电子可以转移到TiO2的导带上, 抑制CsPbBr3钙钛矿量子点中光生载流子的复合, 促进光生载流子的分离(如图6(b)所示), 从而提升光催化性能。

图 6. (a)CsPbBr3、TiO2和CsPbBr3@TiO2的光电流; (b)CsPbBr3@TiO2复合材料的光催化机理示意图

Fig. 6. (a) Photocurrent responses of CsPbBr3, TiO2 and CsPbBr3@TiO2, and (b) Photocatalytic mechanism of CsPbBr3@TiO2 composite

下载图片 查看所有图片

3 结论

利用钛酸四丁酯的水解并煅烧, 成功地在CsPbBr3钙钛矿量子点表面包覆TiO2壳层, 制备了CsPbBr3@TiO2核壳结构纳米复合材料。TiO2作为保护层, 大幅提升了CsPbBr3钙钛矿量子点在水中的结构稳定性。经过光催化降解罗丹明B之后, CsPbBr3@TiO2复合材料的形貌、发光和光催化性能没有发生明显的变化。并且, TiO2包覆还提高了CsPbBr3@TiO2复合材料的载流子分离效率, 从而提升了材料的光催化性能。本研究为使用卤化物钙钛矿量子点作为可见光催化剂提供了新的思路。

参考文献

[1] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546.

[2] LÜ W Z, LI L, XU M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation[J]. Advanced Materials, 2019, 31(28): 1900682.

[3] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2435-2445.

[4] LIUY , LI F S, LI Q Q, et al. Emissions at perovskite quantum dot/film interface with halide anion exchange[J]. ACS Photonics, 2018, 5(11): 4504-4512.

[5] PARK S, CHANG W J, LEE C W, et al. Photocatalytic gydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution[J]. Nature Energy, 2016, 2(1): 16185.

[6] HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8(4): 2522-2536.

[7] LI X, CAO F, YU D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017, 13(9): 1603996.

[8] AKKERMAN Q A, RAINO G, KOVALENKO M V, et al. Genesis challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394.

[9] BAI S, YUAN Z, GAO F, et al. Colloidal metal halide perovskite nanocrystals: synthesis characterization and applications[J]. Journal of Materials Chemistry C, 2016, 4(18): 3898-3904.

[10] ATOURKI L, VEGA E, MAN B, et al. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3-xBrx(0≤x≤1) films[J]. Applied Surface Science, 2016, 371: 112-117.

[11] OTTO T, MULLER M, MUNDRA P, et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity[J]. Nano Letters, 2012, 12(10): 5348-5354.

[12] HANSKE C, HILL E H, VILA-LIARTE D, et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11763-11771.

[13] SHAO H, BAI X, PAN G, et al. Highly efficient and stable blue-emitting CsPbBr3@SiO2 nanospheres through low temperature synthesis for nanoprinting and wled[J]. Nanotechnology, 2018, 29(28): 285706.

[14] LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water light and heat[J]. Angewandte Chemie International Edition, 2017, 56(53): 10696-10701.

[15] LIAO J F, XU Y F, WANG X D, et al. CsPbBr3 nanocrystal/MO2(M=Si, Ti, Sn) composites: insight into charge-carrier dynamics and photoelectrochemical applications[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42301-42309.

[16] LIU S, HE M, DI X, et al. CsPbX3 nanocrystals films coated on YAG: Ce3+ pig for warm white lighting source[J]. Chemical Engineering Journal, 2017, 330: 823-830.

[17] XIN Y, ZHAO H, ZHANG J, et al. Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4971-4980.

[18] ZHOU Q, BAI Z, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168.

[19] LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Advanced Functional Materials, 2018, 28(1): 1704288.

[20] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.

[21] FANG X X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Applied Materials & Interfaces, 2012, 4(12): 7055-7063.

[22] GUO W, LIN Z, WANG X, et al. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides[J]. Microelectronic Engineering, 2003, 66(1-4): 95-101.

[23] YANG J, WANG Y, LI W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Advanced Materials, 2017, 29(48): 1700523.

[24] KIM H G, BORSE P H, CHOI W Y, et al. Photocatalytic nanodiodes for visible light photocatalysis[J]. Angewandte Chemie International Edition, 2005, 44(29): 4585-4589.

[25] ZHOU D, ZHI C, QIAN Y, et al. In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties[J]. Solar Energy Materials and Solar Cells, 2016, 157: 399-405.

[26] ZHOU J, CHEN W, SUN C, et al. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11689-11695.

[27] DONG Y, QIAO T, KIM D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium[J]. Nano Letters, 2018, 18(6): 3716-3722.

[28] LEE S, LEE K, KIM W D, et al. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23627-23634.

肖翔, 郭少柯, 丁成, 张志洁, 黄海瑞, 徐家跃. CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂[J]. 无机材料学报, 2021, 36(5): 507. Xiang XIAO, Shaoke GUO, Cheng DING, Zhijie ZHANG, Hairui HUANG, Jiayue XU. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst[J]. Journal of Inorganic Materials, 2021, 36(5): 507.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!