硅酸盐学报, 2022, 50 (3): 735, 网络出版: 2022-11-11  

反应闪烧技术制备BiFeO3-BaTiO3陶瓷

Reactive Flash Sintering of BiFeO3-BaTiO3 Ceramics
作者单位
长安大学材料科学与工程学院, 西安 710061
摘要
BiFeO3-BaTiO3陶瓷的低温快速烧结致密化有助于抑制Bi元素的挥发, 降低能耗以及快速筛选出具有优异电学性能的BiFeO3-BaTiO3基陶瓷材料。在200 V/cm的直流电场和280 mA的限制电流作用下, 通过反应闪烧Bi2O3、Fe2O3、TiO2和BaCO3混合粉体, 能够在415 ℃的炉温下, 30 s内获得具有良好铁电及压电性能的致密BiFeO3-BaTiO3陶瓷。反应闪烧过程中, 固相化学反应和烧结致密化同时发生; 限制电流值的大小对样品的相变和致密化程度有重要影响。反应闪烧技术可通过一步闪烧陶瓷材料的前驱体混合粉末而获得单相且致密的陶瓷材料, 为陶瓷材料的快速制备提供了一个新的途径。
Abstract
Rapid preparation of dense BiFeO3-BaTiO3 lead-free piezoelectric ceramics at low temperatures is beneficial to preventing the Bi volatilization, reducing the energy consumption and developing novel materials with some unique properties. In this paper, dense BiFeO3-BaTiO3 ceramics with good ferroelectric and piezoelectric properties were prepared in an electric field of 200 V/cm with a current limit of 280 mA via reactive flash sintering of multiphase precursor powders (i.e., Bi2O3, Fe2O3, TiO2 and BaCO3) at 415 ℃ for 30 s. The solid-state reaction in sintering occurs during the flash event. The current limit has an effect on the phase transformation and densification. It is indicated that the reactive flash sintering technology could prepare the single-phase and dense ceramic material through flash sintering of starting precursors in one step, thus providing an effective approach for the rapid production of ceramic materials.
参考文献

[1] ZHANG S J, LI F, YU F P, et al. Recent developments in piezoelectric crystals[J]. J Korean Ceram Soc, 2018, 55(5): 419-439.

[2] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nat Mater, 2018, 17(4): 349-354.

[3] GUO J, TONG B, JIAN J, et al. Enhanced transduction coefficient in piezoelectric PZT ceramics by mixing powders calcined at different temperatures[J]. J Eur Ceram Soc, 2020, 40(8): 3348-3353.

[4] BELL A J, DEUBZER O. Lead-free piezoelectrics-the environmental and regulatory issues[J]. MRS Bull, 2018, 43: 581-587.

[5] WEI H, WANG H, XIA Y, et al. An overview of lead-free piezoelectric materials and devices[J]. J Mater Chem, 2018, C6: 12446-12467.

[6] ZHENG T, WU J, XIAO D, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Prog Mater Sci, 2018, 98: 552-624.

[7] ZHANG M H, HU C, ZHOU Z, et al. Determination of polarization states in (K,Na)NbO3 lead-free piezoelectric crystal[J]. J Adv Ceram, 2020, 9(2): 204-209.

[8] ZHU L F, ZHANG B P, DUAN J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead free ceramics by optimizing the sintering temperature and dwell time[J]. J Eur Ceram Soc, 2018, 38: 3463-3471.

[9] CHEN J, DANIELS J E, JIAN J, et al. Origin of large electric-field-induced strain in pseudo-cubic BiFeO3-BaTiO3 ceramics[J]. Acta Mater, 2020, 197: 1-9.

[10] LEE M H, KIM D J, CHOI H I, et al. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics[J]. ACS Appl Electron Mater, 2019, 1(9): 1772-1780.

[11] LEE M H, KIM D J, CHOI H I, et al. Low sintering temperature for lead-free BiFeO3-BaTiO3 ceramics with high piezoelectric performance [J]. J Am Ceram Soc, 2018, 98: 2692-2695.

[12] ZENG F, FAN G, HAO M, et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high Curie temperature[J]. J Alloy Compd, 2020, 831: 154853.

[13] WANG D, KHESRO A, MURAKAMI S, et al. Reaney, temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics[J]. J Eur Ceram Soc, 2017, 37: 1857-1860.

[14] BIESUZ M, SGLAVO V M.Flash sintering of ceramics[J]. J Eur Ceram Soc, 2019, 39(2-3): 115-143.

[15] SHOMRAT N, ALTIANSKI S, RANDALL C A, et al. Flash sintering of potassium-niobate[J]. J Eur Ceram Soc, 2015, 35(7): 2209-2213.

[16] SU X H, BAI G, JIA Y J, et al. Flash sintering of sodium niobate ceramics[J]. Mater Lett, 2018, 235(JAN.15): 15-18.

[17] WU Y J, SU X H, AN G, et al. Dense Na0.5K0.5NbO3 ceramics produced by reactive flash sintering of NaNbO3-KNbO3 mixed powders [J]. Scripta Mater, 2020, 174(C): 49-52.

[18] GIL-GONZALEZ E, PEREJON A, SANCHEZ-JIMENEZ P E, et al. Phase-pure BiFeO3 produced by reaction flash-sintering of Bi2O3 and Fe2O3 [J]. J Mater Chem A, 2018, 6(13): 5356-5366.

[19] KOK D, YADAV D, SORTINO E, et al. Mecartney, a-Alumina and spinel react into single phase high-alumina spinel in < 3 seconds during flash sintering [J]. J Am Ceram Soc, 2019, 102: 644-653.

[20] JIA Y J, SU X H, WU Y J, et al. Fabrication of lead zirconate titanate ceramics by reaction flash sintering of PbO-ZrO2-TiO2 mixed oxides[J]. J Eur Ceram Soc, 2019, 39(13): 3915-3919.

[21] AVILA V, YOON N, NETO R R I, et al. Reactive flash sintering of the complex oxide Li0.5La0.5TiO3 starting from an amorphous precursor powder[J]. Scripta Mater, 2020, 176: 78-82.

[22] SHI P, QU G, CAI S, et al. An ultrafast synthesis method of LiNi1/3Co1/3Mn1/3O2 cathodes by flash/field-assisted sintering[J]. J Am Ceram Soc, 2018, 101: 4076-7083.

[23] YOON B, AVILA V, RAJ R, et al. Reactive flash sintering of the entropy-stabilized oxide Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O[J]. Scripta Mater, 2020, 181: 48-52.

[24] JESUS L M, SILVA R S, M′PEKO J C. Ultrafast synthesis and sintering of materials in a single running experiment approach by using electric fields[J]. J Adv Ceram, 2019, 8(2): 265-277.

[25] JIA Y J, SU X H, WU Y J, et al. Flash sintering of 3YSZ/Al2O3-platelet composites[J]. J Am Ceram Soc, 2020, 103: 2351-2361.

[26] SU X H, JIA Y J, HAN C X, et al. Flash sintering of lead zirconate titanate ceramics under an alternating current electrical field[J]. Ceram Int, 2019, 45: 5168-5173.

[27] ZHANG H, WANG Y, LIU J, et al. Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition[J]. Ceram Int, 2019, 45: 13551-13555.

[28] YADAV D, RAJ R. The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature[J]. Scripta Mater, 2017, 134: 123-127.

[29] RAJ R. Analysis of the power density at the onset of flash sintering[J]. J Am Ceram Soc, 2016, 99: 3226-3232.

[30] AKRAM F, KIM J, KHAN S A, et al. Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3-

[31] RAJ R. Joule heating during flash-sintering[J]. J Eur Ceram Soc, 2012, 32(10): 2293-2301.

[32] BAI H, LI J, HONG Y, et al. Enhanced ferroelectricity and magnetism of quenched (1-x)BiFeO3-xBaTiO3 ceramics[J]. J Adv Ceram, 2020, 9(4): 511-516.

[33] CHAIM R. Reactive flash sintering (RFS) in oxide systems: kinetics and thermodynamics[J]. J Mater Sci, 2021, 56(1): 278-289.

安盖, 焦智华, 付梦莹, 苏兴华. 反应闪烧技术制备BiFeO3-BaTiO3陶瓷[J]. 硅酸盐学报, 2022, 50(3): 735. AN Gai, JIAO Zhihua, FU Mengying, SU Xinghua. Reactive Flash Sintering of BiFeO3-BaTiO3 Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 735.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!