光学学报, 2023, 43 (4): 0414001, 网络出版: 2023-02-16  

新型高掺Tm3+石英光纤制备及2.0 μm激光性能研究 下载: 647次

Preparation of Highly Tm3+-Doped Silica Fibers and Study of 2.0 μm Laser Performance
作者单位
1 南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
2 中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800
3 国科大杭州高等研究院物理与光电工程学院,浙江 杭州 310024
摘要
稀土掺杂石英光纤具有物化性能稳定、机械强度高、易于系统集成等优点,是目前光纤激光器最核心的增益介质,但其稀土掺杂浓度一般较低(<2%)。利用溶胶凝胶法和高温烧结工艺制备了Tm3+掺杂浓度为8.29×1020 cm-3的高硅氧玻璃,并表征了其光谱性能。采用溶胶镀膜和二次熔融拉锥方法制备了芯径约为4 μm、外径为125 μm的石英光纤,其可与商用无源光纤进行熔接。利用全光纤化线性腔结构,以制备的不同长度掺Tm3+石英光纤作为增益介质,均可实现1947 nm激光输出,光信噪比约为70 dB;当光纤长度为4.6 cm时,斜率效率高达14.1%;同时搭建了掺铥光纤放大器,测得光纤小信号净增益系数为0.48 dB/cm。研究结果表明,该新型光纤制备方法可为高浓度掺铥石英光纤提供新途径,有望推动其在2.0 μm单频及高重频锁模光纤激光器中的应用。
Abstract
Results and Discussions The physical properties of the highly Tm3+-doped silica fiber are measured, which shows the element distribution and the refractive index distribution at the end face of the optical fiber (Fig. 4). The all-fiber short cavity laser system (Fig. 6) is independently built. The 808 nm laser is used to pump the highly Tm3+-doped silica fibers with different lengths of 2.3 cm, 4.6 cm, and 6.5 cm, and the highest slope efficiency of 14.1% is obtained when the fiber length is 4.6 cm. When the pump power is 250 mW, the optical signal-to-noise ratio (SNR) can be about 70 dB (Fig. 7). The silica fiber with a length of 2.3 cm is selected to test the gain performance of the Tm3+-doped silica fiber. When the seed source power is -9.34 dBm, the net small-signal gain coefficient is 0.48 dB/cm (Fig. 9). Meanwhile, the loss coefficient is 1.22 dB/cm at 1310 nm, and the absorption coefficient of Tm3+-doped silica fibers at 808 nm is 2.56 dB/cm. The data indicate that the input signal can be effectively amplified.Objective

The 2.0 μm-band single-frequency laser has the advantages of narrow linewidth, low noise, and good monochromaticity, which is widely used in many fields, such as precision measurement, spaceborne lidar, and high-resolution spectroscopy. Compared with multi-component glass fibers, the rare-earth-doped silica fiber is the core gain medium of fiber lasers, which boasts stable physical and chemical properties, high mechanical strength, and easy system integration. However, it is difficult to achieve the high-concentration doping of rare earth ions by traditional fabrication processes. There is still a gap in the doping concentration between the reported multi-component glass and the silica glass prepared by mature modified chemical vapor deposition (MCVD) combined with the liquid-phase doping process. Used in the short gain fiber for single-frequency lasers based on a distributed Bragg reflection (DBR) structure, the highly Tm3+-doped technique ensures that the fiber has higher effective absorption to the pump source and a lower laser output threshold, which is more conducive to improving the laser performance of the system. For the high gain medium of 2.0 μm-band single-frequency lasers, how to further improve the concentration of Tm3+ in silica glass becomes the focus of this paper.

Methods

We use Tetracthoxysilane (TEOS) as the silicon source, Al2O3 as the network-forming body, and La2O3 as the dispersant of silica glass to prepare highly Tm3+-doped silica sol. Firstly, the high silica glass with the Tm3+ doping concentration of 8.29×1020 cm-3 is prepared by the sol-gel method and high-temperature sintering technology, which has good optical quality, and its spectral properties are characterized. Secondly, the sol-gel coating and melting taper drawing methods are combined innovatively to coat the inner wall of the silica capillary tube. After the film is heat-treated and tapered step by step, the silica fiber with a core diameter of about 4 μm and a cladding diameter of 125 μm is prepared, and the doping concentration of Tm3+ can reach as high as 8.29×1020 cm-3 in the silica fiber. This highly Tm3+-doped silica fiber could be easily fusion-spliced with commercial passive silica fibers. Finally, an all-optical fiber laser system with a DBR structure is built to test the laser performance.

Conclusions

In this paper, we fabricate highly Tm3+-doped high silica glass with a concentration of 8.29×1020 cm-3 by the sol-gel method and high-temperature sintering process. The highly Tm3+-doped silica fiber with a core diameter of about 4 μm and a cladding diameter of 125 μm is also prepared by the sol-gel coating and double melting taper drawing methods. For better laser performance of the highly Tm3+-doped high silica fiber prepared by this innovative process, the follow-up work will be carried out from the following two aspects: the composition control of the core glass and the optimization of the coating process. In terms of composition, the glass with the best fluorescence can be selected through different components. In terms of coating technology, the film thickness can be designed and adjusted, and the core size is adjusted to achieve better NA and mode-field matching when the silica fiber is fused with passive optical fibers. Meanwhile, a 789 nm source can be selected to further study the performance of fiber lasers. To sum up, this fiber preparation method has the potential to realize highly Tm3+-doped silica fibers, which is expected to be applied in 2.0 μm single-frequency fiber lasers and passively mode-locked fiber lasers with a high fundamental repetition rate.

1 引言

2.0 μm波段激光因处于大气传输窗口(1.7~2.1 μm)和人眼安全波段(1.4~2.1 μm),在大气通信、激光遥感以及生物医学等领域有广泛的应用前景1-4。而2.0 μm波段单频激光更是凭借线宽窄、噪声小、单色性好、相干长度长等优势,在精密测量、星载激光雷达、高分辨光谱等领域5-9获得了广泛关注。Tm3+掺杂玻璃及光纤是获得2.0 μm激光的重要增益材料。目前,基于Tm3+掺杂的石英光纤、多组分玻璃光纤均获得了2.0 μm波段单频激光。其中,多组分玻璃由于成分调节范围大,稀土掺杂浓度高,是当前实际中采用的主要高增益介质。华南理工大学和天津大学等单位分别在锗酸盐10和硅酸盐11等软玻璃中相继实现了Tm3+掺杂浓度为8.0×1020 cm-3和8.52×1020 cm-3的高掺杂,光纤在1.95 μm处分别获得了3.6 dB/cm和1.7 dB/cm的增益系数。然而,由于玻璃软化点、热膨胀系数相差较大,多组分软玻璃光纤和石英光纤间的熔接困难导致其应用受限。

稀土掺杂石英玻璃光纤与石英光纤无源器件系统兼容性好,但传统制备工艺难以实现稀土离子的高浓度掺杂。2019年,Lu等12采用改进的化学气相沉积(MCVD)结合液相掺杂工艺,在Tm/Al共掺石英玻璃中实现了铥离子5.66×1020 cm-3的掺杂浓度,其Tm3+掺杂浓度与已报道的多组分玻璃相比仍有差距。基于分布式布拉格反射(DBR)结构的单频激光器所使用的增益光纤较短,高的Tm3+掺杂浓度保证了光纤对泵源更有效的吸收以及更低的激光输出阈值,更有利于提升系统的激光性能。为实现2.0 μm波段单频激光高增益,进一步提高稀土离子在石英玻璃里的掺杂浓度成为了近年来的研究热点。溶胶凝胶(SG)法因实验条件简单,液相条件下原料可均匀混合,通过水解缩合反应生成分子级产物,可在石英玻璃中实现稀土离子分子级高浓度均匀掺杂,从而受到大量研究人员的关注。2019年,Xia等13采用SG法和旋涂工艺,成功制备出Yb3+最高掺杂浓度(物质的量分数)为30%的透明铝硅玻璃薄膜;2020年,Xia等14结合镀膜和熔融拉锥工艺,成功制备出Yb3+掺杂浓度(质量分数)高达5.7%的石英光纤,并实现了光信噪比为70 dB的1.03 μm激光输出。

本文针对目前在2.0 μm波段单频激光中石英玻璃相较于软玻璃Tm3+ 掺杂浓度低的问题,以正硅酸乙酯(TEOS)作为硅源、Al2O3作为石英玻璃网络形成体、La2O3作为分散剂,创新性地将溶胶镀膜法和熔融拉锥工艺相结合,成功研制出Tm3+的掺杂浓度高达8.29×1020 cm-3的石英光纤,该离子掺杂浓度与多组分玻璃中的含量相当10-11;同时对光纤进行了增益性能分析,相关研究方法和结论将有助于推动高增益石英光纤的进一步发展。

2 实验内容

2.1 玻璃及光纤的制备

溶胶组分设计为2.3Tm2O3-3.4La2O3-8.6Al2O3-85.7SiO2(各组分前面的数字加百分号代表物质的量分数),命名为2.3T。以纯度为99.99%的TEOS为硅源,以硝酸盐水合物形式引入相应氧化物,其纯度为分析纯,通过水解缩合反应生成透明溶胶。为表征纤芯玻璃的光谱性能,采用同种原料和组分,利用溶胶凝胶法和高温烧结工艺制备相应成分块体玻璃,具体制备工艺流程可参考文献[15]。最后将玻璃样品两面研磨抛光成厚度为2 mm的玻璃片,用于光谱测试。

石英光纤的制备工艺流程如图1所示。将外径为1130 μm、芯径为130 μm的石英毛细管的一端插入透明溶胶中,另一端与真空泵连接,进行30 s抽滤镀膜;毛细管内壁镀膜后置于90 ℃加热板干燥30 min,湿膜经干燥凝胶化形成透明凝胶膜;随后将样品在O2气氛和1050 ℃下热处理30 min;薄膜玻璃化后,选用日本株式会社藤仓公司Laser Master LZM-100 CO2 激光器为光纤熔接机进行熔融拉锥,石英毛细管经一次拉锥后外径为500 μm,经二次拉锥后得到外径为125 μm、芯径约为4 μm的高掺Tm3+石英光纤。

图 1. 石英毛细管内壁镀膜及熔融拉锥制得Tm3+高掺石英光纤示意图。(a)镀膜;(b)热处理;(c)熔融二次拉锥

Fig. 1. Schematic diagrams of highly Tm3+-doped silica fiber prepared by coating on inner wall of silica capillary and tapering.(a) Coating; (b) heat treatment; (c) secondary fused tapering

下载图片 查看所有图片

2.2 玻璃样品的性能测试与表征

图2所示为玻璃样品的光谱测试图,其中图2(a)中插图是Tm3+高掺杂浓度高硅氧玻璃实物图,玻璃透明性较好、未失透。采用排水法测得玻璃密度为2.83 g·cm-3,玻璃折射率由高掺Tm3+石英光纤的折射率差计算得到,为1.483。采用ICAP 6300型电感耦合等离子体原子发射光谱仪(ICP-ASE)测得Tm3+的掺杂浓度(质量分数)为8.22%。玻璃的物理参数如表1所示,从表1中数据得出,溶胶凝胶法可以在高硅氧玻璃中有效地实现Tm3+的高浓度掺杂。

图 2. Tm3+高掺杂高硅氧玻璃光谱性能。(a)吸收截面;(b)发射光谱(插图为红外透过谱)

Fig. 2. Spectral performance of highly Tm3+-doped high-silica glass. (a) Absorption cross section; (b) emission spectrum (inset is infrared transmission spectrum)

下载图片 查看所有图片

表 1. Tm3+高掺高硅氧玻璃的物理性能

Table 1. Physical properties of highly Tm3+-doped high silica glass

Sample

Density /

(g·cm-3

Refractive index at 633 nmMass fraction of Tm3+/%

Mass fraction

of La3+/%

Mass fraction of Al3+/%

Tm3+ doping

concentration

N0 /(1020 cm-3

Tm3+-doped high

silica glass

2.831.488.2211.336.858.29

查看所有表

图2(a)所示为玻璃的吸收截面,吸收光谱由Perkin Elmer Lambda 950型紫外可见分光光度计测得,吸收截面11可表示为

σa=2.303D(λ)Nd

式中:D(λ)为光密度,其值由分光光度计直接测得;d为玻璃样品厚度;N为样品中Tm3+的掺杂浓度。从图2(a)可以看出,在300~2000 nm范围内存在354 nm、469 nm、683 nm、789 nm、1211 nm、1649 nm 6个峰位,其分别对应于基态3H6跃迁至激发态1D21G43F2,33H43H53F4图3)。最强主峰位于789 nm(3H63H4),由式(1)计算出吸收截面为17.47×10-21 cm2,此吸收截面远大于硅酸盐玻璃中Tm3+掺杂浓度为8.52×1020 cm-3时的4.4×10-21 cm2。利用该波段进行泵浦,高强度的吸收可使3H4能级粒子大量堆积,粒子能级间发生(3H6+3H43F4+3F4)能量传递,强的交叉弛豫效应(CR)有利于实现2.0 μm发光。第二强吸收峰1211 nm(3H63H5)处吸收截面大于1649 nm(3H63F4)处,Tm3+掺杂浓度分别为14.94×10-21 cm2和8.43×10-21 cm2,此吸收特性也不同于硅酸盐中Tm3+特性16图2(b)所示的玻璃样品发射光谱由Edinburgh Instruments 公司 FLS 920型时间分辨光谱仪测得,采用808 nm光泵浦玻璃样品时荧光主峰位于1888 nm,荧光半峰全宽为280 nm,1400~1500 nm范围内存在荧光小峰,峰值位于1466 nm,对应能级跃迁为 3H43F4,此处峰值远小于1888 nm处,其原因是玻璃在789 nm附近的强吸收使得Tm3+粒子间交叉弛豫增强,3H4能级粒子数减少,3F4能级粒子数明显增多,图3所示为Tm3+能级简图以及粒子间的交叉弛豫。图2(b)中插图为玻璃样品的红外透过谱,由Nicolet 6700型Fourier转换红外光谱仪测定,测试范围为1800~4000 cm-1,利用式(2)计算玻璃中羟基的含量:

COH=MOHε×ρ×1l×ln T0T

式中:MOH为OH-的摩尔质量;ε为消光系数,ε=77.5 L·mol-1·cm-1lρ分别为玻璃样品的厚度和密度;T0T分别为玻璃的最高透过率和在3500 cm-1处的透过率。最终计算得到的OH-吸收系数为0.0595 cm-1,远小于用传统熔融淬冷法制备的掺Tm3+锗酸盐玻璃的0.51 cm-1的OH-吸收系数17,说明通过溶胶凝胶法可以制备出低羟基含量的Tm3+高浓度掺杂高硅氧玻璃,这有利于稀土在2.0 μm处发光。以上光谱特性表征结果表明,溶胶凝胶法可有效制备光学质量良好的高浓度掺Tm3+高硅氧玻璃。

图 3. Tm3+能级简图以及粒子间交叉弛豫

Fig. 3. Simplified energy level diagram of Tm3+ and cross relaxation between Tm3+ ions

下载图片 查看所有图片

采用型号为JXA-8230的电子探针显微分析仪(EPMA)设备对石英光纤的端面进行电子探针扫描,所得元素分布如图4(a)所示,Al、Tm、La三种元素的分布一致,元素含量从纤芯向包层均匀递减,这是由石英毛细管在热处理以及熔融拉锥过程中掺杂元素向包层发生热扩散导致的。这一现象也表现在图4(b)所示的光纤端面折射率分布图中,纤芯与石英包层的折射率差分布为渐变型而非阶跃型。为改善这种情况以及实现高掺Tm3+石英光纤对泵浦光的有效吸收,后续将进一步优化石英毛细管内壁膜层热处理工艺,通过降低膜层的烧结温度、缩短烧结时间以及提高熔融拉锥速率等来抑制掺杂元素在成纤过程中的热扩散。由于Tm3+、La3+对纤芯折射率的贡献大18,纤芯包层的折射率差为0.033,对应光纤的数值孔径(NA)为0.36,间接证明了溶胶凝胶法极为有效地在石英光纤中实现了Tm3+高浓度掺杂。利用式(3)计算光纤的截止波长19

λc=2πaV/NA

式中:λc为单模激光输出的截止波长;a为光纤纤芯半径;V为单模激光归一化频率,单模光纤要求V≤2.4048;NA为光纤的数值孔径。经计算得到该光纤的截止波长为1881 nm,满足2.0 μm激光在光纤中的单模传输条件。为了验证高掺Tm3+石英光纤的出光可行性,将该光纤与商用无源石英光纤进行熔接。图5所示为光纤熔接效果图,可以看出光纤熔接端口平滑,极易与无源石英光纤进行熔接,且很有效地避免了由多组分纤芯材料不匹配所带来的熔接困难问题,同时测得两点的熔接损耗为0.9 dB,此处损耗偏大,其主要原因是光纤NA不匹配。

图 4. 高掺Tm3+石英光纤的物理性能。(a)光纤端面元素分布(插图:光纤端面);(b)光纤折射率分布

Fig. 4. Physical properties of highly Tm3+-doped silica optical fiber. (a) Element distribution at end face of optical fiber (inset is end face of optical fiber) ; (b) refractive index distribution of optical fiber

下载图片 查看所有图片

图 5. 高掺Tm3+石英光纤与无源石英光纤熔接效果图

Fig. 5. Images of fusion splicing between highly Tm3+ -doped silica optical fiber and passive silica optical fiber

下载图片 查看所有图片

3 分析与讨论

3.1 高掺Tm3+石英光纤的激光性能研究

为探究高掺Tm3+石英光纤的激光性能,搭建了如图6所示的基于全光纤化线性腔结构的光纤激光器,泵浦源选用最大功率为250 mW的半导体808 nm激光二极管。谐振腔由高反光栅(HR FBG)和耦合输出光栅(OC FBG)构成。HR FBG在1947.67 nm处的3 dB带宽为0.7 nm,反射率大于99%;OC FBG的中心波长位于1947.66 nm,3 dB带宽为0.15 nm,反射率为87.8%。光栅与有源光纤(TDF)之间采用熔接方式连接。

图 6. 基于全光纤化线性腔结构的1947 nm型光纤激光器

Fig. 6. 1947 nm fiber laser based on all-fiber linear cavity structure

下载图片 查看所有图片

泵浦光经793 nm/1950 nm波分复用器(WDM1)的泵浦端输出至谐振腔,利用WDM2分离1947 nm信号激光与残余泵浦光。对长度分别为2.3 cm、4.6 cm、6.5 cm的增益光纤进行激光效率测试,将吸收泵浦功率、输出激光功率进行线性拟合,斜率效率如图7(a)所示。随着光纤长度的增加,激光阈值逐渐增大,斜率效率先增大后减小,4.6 cm长度时斜率效率最大为14.1%。随着光纤长度的增加,激光增益先逐渐增大并趋于饱和,光纤长度进一步增加时自吸收效应增强,光光转换效率逐渐降低。图7(b)所示为利用光纤光谱仪测试得到的激光光谱,分辨率为0.05 nm,测试范围为1600~2100 nm。当808 nm波长的泵源功率达250 mW时,可以明显观察到1947 nm处激光信号,光信噪比(OSNR)约为70 dB,半峰全宽为0.7 nm。

图 7. 高掺Tm3+石英光纤激光性能。(a)不同光纤长度下的斜率效率;(b)4.6 cm高掺Tm3+石英光纤激光光谱(插图为1944~1951 nm范围的激光光谱)

Fig. 7. Laser performance of highly Tm3+-doped silica optical fiber. (a) Slope efficiency for different fiber length; (b) laser spectrum of 4.6-cm highly Tm3+-doped silica optical fiber (inset is laser spectrum in range of 1944-1951 nm)

下载图片 查看所有图片

3.2 高掺Tm3+石英光纤的增益性能研究

为了进一步研究高掺Tm3+石英光纤的增益性能,自主搭建了1947 nm信号源以及掺铥光纤放大器,如图8所示。由于单频激光器一般要求光纤长度较短,因此本实验选用2.3 cm光纤进行研究,同时选用6.5 cm掺Tm3+石英光纤作为信号源的增益光纤,测试得到种子源的功率为-9.34 dBm。图9(a)记录了2.3 cm掺Tm3+石英光纤在不同泵浦功率下输出信号的强度,图9(b)为对应掺Tm3+石英光纤的小信号净增益特性曲线。从图9中可以看出,随着泵浦光功率的提高,信号光强度快速增大;泵浦功率增至83 mW时开始实现净增益,增大到125 mW左右时,信号光强的提升速率逐渐降低;功率进一步提升至250 mW时,光纤增益趋于饱和,此时1947 nm处小信号净增益系数为0.48 dB/cm。同时,测得损耗系数为1.22 dB/cm@1310 nm,掺Tm3+石英光纤在808 nm处的吸收系数为2.56 dB/cm。以上数据表明,输入信号可以得到有效放大。

图 8. 1947 nm信号源以及掺铥光纤放大器

Fig. 8. 1947 nm signal source and Tm3+-doped fiber amplifier

下载图片 查看所有图片

图 9. 2.3 cm高掺Tm3+石英光纤增益特性。(a)不同泵浦功率下输出信号的强度;(b)增益系数曲线

Fig. 9. Gain characteristics of 2.3-cm highly Tm3+-doped silica optical fiber. (a) Output signal intensity for different pump power; (b) gain coefficient curve

下载图片 查看所有图片

为了实现高增益高功率2.0 μm波段单频激光,目前实验中大多采用793 nm20、1565 nm21等波段激光器泵浦掺Tm3+有源光纤,让高掺Tm3+短纤有更好的吸收和放大性能。本实验中Tm3+高掺高硅氧玻璃的最强吸收波长位于789 nm,因此,可采用789 nm的泵浦光进行泵浦,或者采用长波长(1565 nm)泵浦光提升量子效率。后续工作拟采用789 nm波段泵浦源对此光纤进行深入研究,使用该波长泵浦石英光纤可提高对激发光的利用率,有望进一步提高石英光纤的激光性能。

4 结论

采用溶胶凝胶法和高温烧结技术制备了Tm3+掺杂浓度为8.29×1020 cm-3、光学质量较好的高硅氧玻璃。创新性地采用溶胶镀膜和熔融拉锥工艺相结合的技术,研制出了芯径约为4 μm、外径为125 μm的高掺Tm3+石英光纤,并对光纤的激光性能进行了测试。采用808 nm激光泵浦2.3 cm、4.6 cm和6.5 cm三种不同长度的高掺Tm3+石英光纤,得到的最高斜率效率达14.1%,1947 nm处可实现的光信噪比约为70 dB;选用2.3 cm的短光纤测试了光纤的增益性能,得到的净增益系数为0.48 dB/cm。为进一步提高此创新工艺所制备的高掺Tm3+石英光纤激光性能,后续工作将从纤芯玻璃组分调控、镀膜工艺优化两方面开展。组分方面,可通过不同组分玻璃筛选出荧光效果最佳的玻璃配方;工艺方面,设计并调控膜层厚度,通过对纤芯尺寸的调控使得与无源光纤熔接时有更好的NA、模场匹配。同时,后续可选用789 nm波段泵浦源对光纤激光性能进行进一步研究。综上所述,此光纤制备方法在实现石英光纤的高Tm3+掺杂浓度方面具有潜力,有望推动2.0 μm石英光纤单频及高重频锁模光纤激光器的应用。

参考文献

[1] Chen H L, Gao L F, Qin Z P, et al. Recent advances of low-dimensional materials in mid- and far-infrared photonics[J]. Applied Materials Today, 2020, 21: 100800.

[2] Wagener T J, Demma N, Kmetec J D, et al. 2 μm LIDAR for laser-based remote sensing: flight demonstration and application survey[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(2): 23-28.

[3] XieX M, XuQ, HuW Y, et al. A brief review of 2 μm laser scalpel[C]//2020 IEEE 5th Optoelectronics Global Conference, September 7-11, 2020, Shenzhen, China. New York: IEEE Press, 2020: 63-67.

[4] 张安军, 段嘉霖, 邢颍滨, 等. 掺铥激光在生物医疗领域的应用[J]. 激光与光电子学进展, 2022, 59(1): 0100004.

    Zhang A J, Duan J L, Xing Y B, et al. Application of thulium-doped laser in the biomedicine field[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100004.

[5] ScholleK, LamriniS, KoopmannP, et al. 2 µm laser sources and their possible applications[M]//Pal B. Frontiers in guided wave optics and optoelectronics. London: InTech, 2010.

[6] Gibert F, Pellegrino J, Edouart D, et al. 2-μm double-pulse single-frequency Tm∶fiber laser pumped Ho∶YLF laser for a space-borne CO2 lidar[J]. Applied Optics, 2018, 57(36): 10370-10379.

[7] Ma J, Qin Z P, Xie G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region[J]. Applied Physics Reviews, 2019, 6(2): 021317.

[8] 杨昌盛, 岑旭, 徐善辉, 等. 单频光纤激光器研究进展[J]. 光学学报, 2021, 41(1): 0114002.

    Yang C S, Cen X, Xu S H, et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 2021, 41(1): 0114002.

[9] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48(4): 0401003.

    Zhou P, Su R T, Ma Y X, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48(4): 0401003.

[10] Tang G W, Wen X, Huang K M, et al. Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser[J]. Applied Physics Express, 2018, 11(3): 032701.

[11] 张钧翔, 史伟, 史朝督, 等. 新型高掺铥硅酸盐玻璃光纤及其光纤激光的研究[J]. 红外与激光工程, 2021, 50(9): 20200424.

    Zhang J X, Shi W, Shi C D, et al. Research of novel highly thulium-doped silicate glass fiber and related fiber lasers[J]. Infrared and Laser Engineering, 2021, 50(9): 20200424.

[12] Lu Y, Feng G F, Wang M, et al. Tm3+-doped silica-glass fiber for ∼2-μm fiber laser[J]. Applied Optics, 2019, 58(7): 1747-1751.

[13] Xia L S, Yu C L, Sun S Y, et al. Preparation and characterization of sol-gel derived highly transparent aluminosilicate glass thin films with ultrahigh doping level of Yb3+ ions[J]. Optical Materials, 2019, 98: 109352.

[14] Xia L S, Wang M, Kuan P W, et al. Paving way for fabrication of silica-based single-frequency seed laser: ultrahighly Yb-doped optical fibers via sol-gel method combined with silica tube inner wall coating and fusion-tapering technique[J]. Optics & Laser Technology, 2020, 131: 106425.

[15] 李志兰, 王世凯, 王欣, 等. 溶胶凝胶法制备的掺铥石英玻璃光谱性质及光纤激光性能[J]. 中国激光, 2013, 40(8): 0806003.

    Li Z L, Wang S K, Wang X, et al. Spectral properties of Tm3+-doped silica glasses and laser behaviors of fibers by sol-gel technology[J]. Chinese Journal of Lasers, 2013, 40(8): 0806003.

[16] Li M, Bai G X, Guo Y Y, et al. Investigation on Tm3+-doped silicate glass for 1.8 μm emission[J]. Journal of Luminescence, 2012, 132(7): 1830-1835.

[17] 焦孟珺, 王欣, 胡丽丽. Tm2O3掺杂浓度对锗酸盐玻璃热稳定性及光谱性质的影响[J]. 中国激光, 2018, 45(6): 0603001.

    Jiao M J, Wang X, Hu L L. Influences of Tm2O3 doping concentration on thermal stability and spectroscopic properties of germanate glass[J]. Chinese Journal of Lasers, 2018, 45(6): 0603001.

[18] 王雪. 改性石英玻璃的结构和2 μm光谱及其光纤性能研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2017.

    WangX. Study on the structure and 2 μm spectrum of modified Shi Ying glass and its fiber properties[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2017.

[19] Ruan L, Wang W T, Zhang Z J, et al. Fabrication of thulium-doped silica optical fiber[J]. Proceedings of SPIE, 1998, 3557: 67-70.

[20] Fu S J, Shi W, Lin J C, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber[J]. Optics Letters, 2015, 40(22): 5283-5286.

[21] Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419.

沈骁, 杨广利, 王亚飞, 陈应刚, 于春雷, 韦玮, 胡丽丽. 新型高掺Tm3+石英光纤制备及2.0 μm激光性能研究[J]. 光学学报, 2023, 43(4): 0414001. Xiao Shen, Guangli Yang, Yafei Wang, Yinggang Chen, Chunlei Yu, Wei Wei, Lili Hu. Preparation of Highly Tm3+-Doped Silica Fibers and Study of 2.0 μm Laser Performance[J]. Acta Optica Sinica, 2023, 43(4): 0414001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!