人工晶体学报, 2023, 52 (11): 2007, 网络出版: 2023-12-05  

双层MoS2/VS2范德瓦耳斯异质结中界面特性的改善与光学性能的提升

Improvement of Interface Properties and Optical Properties in Bilayer MoS2/VS2 Van der Waals Heterojunctions
作者单位
1 南京邮电大学理学院, 南京 210023
2 南京邮电大学材料科学与工程学院, 南京 210023
3 河南大学物理与电子学院, 开封 475004
摘要
利用基于密度泛函理论的第一性原理计算研究了不同层数MoS2和VS2堆垛形成的范德瓦耳斯异质结的电子结构和光学性能。通过从头算分子动力学验证了两种异质结在室温下的稳定性。此外, 两种异质结均显示p型肖特基接触, 但相较于单层MoS2构成的异质结, 在双层MoS2和VS2堆垛形成的异质结中, 势垒高度从0.36 eV显著降低到0.08 eV, 有效地形成了低接触电阻, 有助于降低载流子输运损失的能量。光吸收光谱的计算表明, 双层MoS2构成的异质结具有更高的吸收峰值。研究成果对基于MoS2的异质结设计以及在高性能光电器件方面的应用提供了理论依据。
Abstract
The electronic structure and optical properties of van der Waals heterostructures with different layers of MoS2 and VS2 stacks were studied by first-principles calculations based on density functional theory. The stability of two heterojunctions at room temperature was verified through ab initio molecular dynamics. In addition, both heterojunctions exhibit p-type Schottky contact. But compared to the heterojunction composed of monolayer MoS2, the barrier height in the heterojunction formed by the stacking of bilayer MoS2 and VS2 significantly decreases from 0.36 eV to 0.08 eV, effectively forming a low contact resistance and reducing the energy loss of carrier transport. The calculation of the light absorption spectrum indicates that the heterojunction composed of bilayer MoS2 has higher absorption peaks. The research results provide a theoretical basis for the design of heterojunctions based on MoS2 and their applications in high-performance optoelectronic devices.
参考文献

[1] JIANG N N, XIE Y, WANG S F, et al. Electronic structure and carrier mobility of BC6N/BN van der Waals heterostructure induced by in-plane strains[J]. Applied Surface Science, 2023, 623: 157007.

[2] PANG Q, XIN H, CHAI R P, et al. In-plane strain tuned electronic and optical properties in germanene-MoSSe heterostructures[J]. Nanomaterials, 2022, 12(19): 3498.

[3] LIU J, WU X, XIE Y, et al. Tuning electronic structures and optical properties of graphene/phosphorene heterostructure via electric field[J]. Micro and Nanostructures, 2022, 164: 107184.

[4] LIU P Y, LIU S Y, JIA M L, et al. Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer[J]. Applied Physics Letters, 2022, 121(6): 063103.

[5] SUN Y, WANG L C, LI X Y, et al. TM2B3 monolayers: intrinsic anti-ferromagnetism and Dirac nodal line semimetal[J]. Applied Physics Letters, 2022, 121(18): 183103.

[6] GUPTA D, CHAUHAN V, KUMAR R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: past and recent developments[J]. Inorganic Chemistry Communications, 2020, 121: 108200.

[7] CHO K, MIN M, KIM T Y, et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules[J]. ACS Nano, 2015, 9(8): 8044-8053.

[8] SENSOY M G, VINICHENKO D, CHEN W, et al. Strain effects on the behavior of isolated and paired sulfur vacancy defects in monolayer MoS2[J]. Physical Review B, 2017, 95: 014106.

[9] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[10] WU S F, HUANG C M, AIVAZIAN G, et al. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization[J]. ACS Nano, 2013, 7(3): 2768-2772.

[11] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116.

[12] LIU Y Y, STRADINS P, WEI S H. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4): e1600069.

[13] LIU Y, GUO J, ZHU E B, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J]. Nature, 2018, 557(7707): 696-700.

[14] SHEN T, REN J C, LIU X Y, et al. Van der Waals stacking induced transition from Schottky to ohmic contacts: 2d metals on multilayer InSe[J]. Journal of the American Chemical Society, 2019, 141(7): 3110-3115.

[15] NAJMAEI S, YUAN J T, ZHANG J, et al. Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers[J]. Accounts of Chemical Research, 2015, 48(1): 31-40.

[16] PADILHA J E, MIWA R H, DA SILVA A J R, et al. Two-dimensional van der Waals p-n junction of InSe/phosphorene[J]. Physical Review B, 2017, 95(19): 195143.

[17] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

[18] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[19] BENGTSSON L. Dipole correction for surface supercell calculations[J]. Physical Review B, 1999, 59(19): 12301-12304.

[20] DELLEY B. From molecules to solids with the DMol3 approach[J]. The Journal of Chemical Physics, 2000, 113(18): 7756-7764.

[21] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.

[22] NOS S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.

[23] MARTYNA G J, KLEIN M L, TUCKERMAN M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics[J]. The Journal of Chemical Physics, 1992, 97(4): 2635-2643.

[24] RAMASUBRAMANIAM A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physical Review B, 2012, 86(11): 115409.

[25] PISONI R, DAVATZ T, WATANABE K, et al. Absence of interlayer tunnel coupling of K-valley electrons in bilayer MoS2[J]. Physical Review Letters, 2019, 123(11): 117702.

[26] MOTT N F. The theory of crystal rectifiers[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1939, 171(944): 27-38.

[27] PENG R, MA Y D, ZHANG S, et al. Self-doped p-n junctions in two-dimensional In2X3 van der Waals materials[J]. Materials Horizons, 2020, 7(2): 504-510.

[28] WU Q S, XU W W, QU B Y, et al. Au6S2 monolayer sheets: metallic and semiconducting polymorphs[J]. Materials Horizons, 2017, 4(6): 1085-1091.

[29] YOUSEFI M, FARAJI M, ASGARI R, et al. Effect of boron and phosphorus codoping on the electronic and optical properties of graphitic carbon nitride monolayers: first-principle simulations[J]. Physical Review B, 2018, 97(19): 195428.

潘乘风, 时安琪, 孙大中, 李沙沙, 王冰, 牛相宏. 双层MoS2/VS2范德瓦耳斯异质结中界面特性的改善与光学性能的提升[J]. 人工晶体学报, 2023, 52(11): 2007. PAN Chengfeng, SHI Anqi, SUN Dazhong, LI Shasha, WANG Bing, NIU Xianghong. Improvement of Interface Properties and Optical Properties in Bilayer MoS2/VS2 Van der Waals Heterojunctions[J]. Journal of Synthetic Crystals, 2023, 52(11): 2007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!